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Abstract

We derive the precise locations of the critical points in several random spin sys-
tems, the +.J Ising model, the Gaussian model, and the Potts spin glass on the
square lattice, and the 4.J Ising model on the triangular lattice. A relationship
between different partition functions established by consideration with a symmetry,
the duality, plays an important role in proving these results. This technique has
been originally applied to non-random spin systems and given the exact solutions.
Recently a variant technique has been proposed and predicted the locations of the
critical points in classical spin systems with random couplings. However some re-
sults by this technique do not show good consistencies with existing results in several
cases.

As an improved way, we use a systematic summation of a part of spins in the
partition functions, the renormalization group analysis, to increase the precision of
the predictions beyond a conventional technique. This technique shows greatly suc-
cessful improvement especially for the random spin systems on special lattices with
a convenient structure for such summation, the hierarchical lattices. The obtained
results are in good agreement with the existing results by other approaches. We
also attempt to predict precise locations of the critical points in several random spin
systems defined on regular lattices such as the square, triangular, and hexagonal
lattices. The technique established in this thesis is, possibly, a unique tool to ana-
lytically derive the location of the critical points in the finite-dimensional random
spin systems.
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Chapter 1

Introduction

We deal with the random spin systems in which the strength of interactions between
the localized electron spins are not uniform in space. If the signs of interactions
between two spins are not spatially definite, we find conflicts between two types
of effects, which order spins in parallel and antiparallel directions, by ferromagnetic
interactions and by antiferromagnetic interactions, respectively. Because of the com-
peting interactions, we can see a peculiar phenomenon in a low-temperature region,
the spin glass, which is quite a different phase from the ferromagnetic phase and
the paramagnetic phase found in normal magnetic material. Therefore the phase
diagram in random spin systems has a highly rich structure and has critical points
related with the peculiar phase transitions and the critical phenomena. Random
spin systems is one of the most attractive issues not only as an intrinsic problem to
understand such different behaviors investigated in spin systems with randomness
from those without any randomness, but also as applications to other fields beyond
physics [1, 2, 3].

The aim of this thesis is to derive the precise locations of critical points on
the phase diagrams in random spin systems. This study is of practical importance
for numerical studies since precise values of the critical points give benchmarks for
the numerical simulations and greatly facilitate to estimate the critical exponents
characterizing the critical phenomena.

Before going into detailed theoretical discussions, we first review topics and his-
tory of spin glasses.

1.1 Spin Glass

A magnetic alloy like CuMn, which is one of the spin glass materials consisting of
noble metals (Au, Ag, Cu, Pt) weakly diluted with transition metals (Fe, Mn), has
curious interactions between localized spins with a potential which oscillates as a

11
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Figure 1.1: Sketch of the characteristic phenomena found in the spin glass. The left panel
describes the cusp in the frequency-dependent susceptibility in a low field. The right panel
expresses the behavior of a broad peak in specific heat. The dotted line is a sharp peak
as found in ferromagnetic material for comparison. The spin glass transition temperature
is written by Tsq.

function of the separation of the spins in the transition metal. This interaction is
known as the RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction [4, 5, 6] and is
written as,

cos 2kprij
= (1.1)

i 7"% )

where J;; is the strength of interaction between two spins, the subscript 75 denotes
the indices of spins in the transition metal, and r;; is the distance between two spins.
The quantity kp is the Fermi wave number. This peculiar interaction generates a
competition between parallel and antiparallel ordering effects for the direction of the
localized spin, and causes a nontrivial behavior in the low-temperature region, the
spin glass. Several characteristic phenomena observed in spin-glass materials are
explained below. The cusp in the frequency-dependent susceptibility in low fields
as shown in Fig. 1.1 was first observed as a peculiar behavior of the spin glass
by Cannella and Mydosh [7]. This phenomenon of the cusp was also found in the
insulator Eu,Sr; .S [8] as well as in the dilute metallic alloys. Specific heat of the
spin glasses at the critical point between the spin glass and paramagnetic phases
has the behavior of a rather broad peak, which is different from one between the
ferromagnetic and paramagnetic phases [9, 10].

To deal with random spin systems with spatially non-uniform interactions, we
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Figure 1.2: The upper figures are the possible configurations as the ground state for a
four-bond system with a single antiferromagnetic interaction. The X symbols denote the
unsatisfied bonds with a locally high energy —.J;;S;S; = J. The bottom figure denotes
the one with two antiferromagnetic interactions.

have to construct a mathematical model, namely the random-bond Ising model de-
fined through the Hamiltonian,

H=-Y J;SS;. (1.2)
(i)

where S; is the Ising spin taking the integer value 1, and .J;; expresses the strength
of interactions between two spins.

In the high-temperature region, we can imagine the existence of a paramagnetic
phase, similarly to pure ferromagnetic materials as the non-random Ising model. On
the other hand, we find that the ground state obtained by minimizing the Hamil-
tonian shows quite a different behavior from the non-random Ising model. Simpli-
fying the RKKY interaction, we consider the strength of interactions are uniform,
expressed by .J, but only the signs are non-uniform in space, because the crucial
point of the spin glass is competing interactions between ferromagnetic and antifer-
romagnetic ones as explained below. This is called the +.J Ising model. As shown in
Fig. 1.2, a single antiferromagnetic interaction yields several degeneracies in possible
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state state

Figure 1.3: The structure of the free energy. The left panel expresses that with two
valleys as for the ferromagnetic material. The right panel denotes maltivalley structure
for the spin glass.

ground states. However two antiferromagnetic ones do not allow any configurations
except for the global inversion degeneracy. It is known that odd numbers of an-
tiferromagnetic interactions generates such degeneracies of the ground state and is
explained by the concept of the frustration [11, 12]. This frustrations yield, in other
words, many minima of the free energy and destroys the ferromagnetic order of
spin directions in the low-temperature region. Therefore if the number of frustra-
tion increases, the free energy has complicated multivalley structure as in Fig. 1.3
[15, 16, 17, 18], and the ferromagnetic ordered state is violated.

However if we observe the behavior of change of spin orientations for a long
time, they mostly do not change, but are frozen. This state, that is disorder in
space but order in time, is called the spin glass phase. Usually the ordered phase is
characterized by an order parameter. The spin glass order parameter is defined as,

¢ = [(S:)?],, (1.3)

where two brackets (---) and [-- -] are thermal and configurational averages for the
random couplings J;;, respectively. This order parameter describes, as explained
below, the degree of freezing of the system inside a valley from a point of view of
the multivalley structure of the free energy. In the spin glass phase, the spins should
be randomly frozen. Thus the quantity (S;) does not vanish at any site because the
spin does not fluctuate significantly in time. On the other hand, its configurational
averaged value [(S;)] becomes zero, because the configurational average for J;; re-
flects the average over various environments at a given spin and yields both of the
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positive and negative values for (S;). In the same situation, the spin glass parameter
does not vanish because of the average of non-zero values (S;)2. The spin glass phase
is thus given by the condition that the spin-glass parameter has a non-zero value
(¢ # 0), while the conventional magnetic order parameter is zero (m = [(S;)] = 0).

Let us further consider the spin glass state from a point of view of the multi-
valley structure of the free energy. Imagine that we have performed a number of
experiments. We let the system relax to the thermal equilibrium. Each experiment
will be characterized by some equilibrium values of the local spin magnetizations
m¢, where a expresses the index of the experiment. We then define the following
quantity which describes how the states are close to each other obtained in different
experiments,

1
Gab = 77 Zm?mf, (1.4)

where the summation runs over all sites. This quantity has its maximum when
the two states in the experiments a and b coincide. We introduce the distribution
function P(q) to consider the statistical properties of the overlaps qu,

P(q) = 6(qas — q)- (1.5)

The paramagnetic phase is expressed by the unique global minimum of the free
energy, in which the obtained magnetizations in all experiments become zero. If the
free energy has a simple structure of two valleys with the magnetization +m for the
ferromagnetic phase as in Fig. 1.3, the distribution P(g) is constituted only by two
delta functions at ¢ = +m? as in Fig. 1.4. On the other hand, for the case that qg
has various values, P(¢) has a continuous part as in Fig. 1.4

Next some of analytic studies for the spin glass are introduced. The random-
bond Ising model is also called the Edwards-Anderson model [13]. Edwards and
Anderson demonstrated that the spin glass phase occurs within a novel form of
the molecular-field theory (Curie-Weiss theory). Later Sherrington and Kirkpatrick
proposed a variant of the Edwards-Anderson model, which can be exactly solved
with the mean-field theory [14]. This pioneering work by the mean-field theory
gave the phase diagram of the infinite-dimensional Edwards-Anderson model with
the Gaussian distribution for .J;; as in Fig. 1.5. In the mean-field analysis, the
spin glass order parameter emerges through the formulation by the replica method
[19, 20, 21, 22]. The replica method enables us to evaluate the configurational
averaged value for the various distributions of the random couplings .J;;. We then
need to prepare copies of the random spin system with the replica spins {S¢}. In
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P(q) P(q) P(q)

0 q —m? 0 +m?4q 0 q

Figure 1.4: The distribution of the overlap q. The left panel shows the case for the
paramagnetic phase, the middle one denotes that for the ferromagnetic phase, and the
right one gives that for the spin glass phase.

T/J
PM

. FM

SG \

Y

0 1 Jo/J

Figure 1.5: The phase diagram obtained by the mean-field theory. The paramagnetic
phase is denoted as PM, the ferromagnetic phase is by FM, the spin glass phase is expressed
by SG. The Sherrington and Kirkpatrick solution gives the phase boundary between the
ferromagnetic and the spin-glass phases denoted by the dashed line. The Parisi solution
developed by the concept of the replica symmetry breaking gives the correct answer as
denoted a vertical line.
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the analysis by the mean-field theory, two types of the order parameters are defined,
me = [(57)]a (1.6)
ws = [(S05D)] (1.7)

av

where the indices o and [ denote different copies in the replica method. Under
the replica-symmetry assumption g,s = ¢, Sherrington and Kirkpatrick solved the
equations of the state and gave indeed a solution with the spin glass state m = 0 and
g > 0. However this Sherrington-Kirkpatrick solution has a problem with negative
entropy. Parisi used the concept of the replica symmetry breaking [23, 24, 25|, which
states that a solution of the equations of the state is given by a matrix of g, with a
special structure, solved this problem and he showed the correct phase diagram as
in Fig. 1.5.

After then, mainly through analyses by the mean-field theory, many concepts
related with the spin glass and other available techniques for analysis of behaviors
in the spin glass were proposed and established. (the broken ergodicity [26], and
the ultrametricity [27, 28], the TAP equation [29], and the renormalization group
analysis [30, 31, 32, 33].)

1.2 Toward Finite Dimensional Spin Glass

The mean-field theory indeed showed the existence of the spin glass phase [14], as
well as ferromagnetic and paramagnetic phases as in Fig. 1.5. A natural ques-
tion is whether such a rich structure of the phase space appears or not in finite-
dimensional systems, which expresses more realistic situations. It is in general very
difficult to investigate two- and three- dimensional systems by analytical methods.
Current studies are predominantly by the numerical methods. Various numerical
approaches by the recent development of the computational power have been sug-
gested and elucidated phenomenon in random spin systems. Owing to the effort by
such numerical approaches, we have found that the spin glass phase is spread out for
finite-temperature region in three-dimensional systems as in Fig. 1.6 [35, 36, 37, 38|.
On the other hand, in two-dimensional systems, there is a general consensus that
the spin glass phase exists only in the ground state [36, 39, 40, 41, 42].

Though we explained the studies on the spin glass above, in this thesis, our
main interest does not lie directly in issues of the properties and the existence of the
spin glass phase in finite dimensions. We instead will concentrate ourselves on the
precise determination of the structure of phase diagram of finite-dimensional spin
glasses. This study is of practical importance for numerical studies since, in numer-
ical simulations or even experiments, the possibility of numerically approaching the
critical point and extrapolating to the thermodynamic limit is in general restricted.
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This restriction is remarkable for spin glasses, in which there are severe technical
difficulties. For instance, there are long equilibration times and necessity of average
over many realizations of the random systems to make error bars small enough.
These problems make us to study with systems of relatively small size in numeri-
cal approaches. Therefore exact values of critical points greatly facilitate reliable
estimates of critical exponents in finite-size scaling. In addition, it is not yet clear
how reliable the numerical results are. For instance, the estimations of one of the
critical exponents, v, for the three-dimensional 4. Ising model have significantly
changed during the years as summarized in Ref. [43]. Two examples of the recent
estimations show deviations as v = 2.72(8) [44] and 2.39(5) [43]. Such a problem
on the reliability of the numerical estimations appears in one of the most challeng-
ing current studies on the spin glass. The nature of ordering in spin glass phase
for three-dimensional system remains a controversial issue which the droplet theory
[45, 46, 47], and the replica symmetry breaking theory [23, 24, 25] introduced above
are valid for the description of the spin glass phase. An crucial difference between
these theories concerns the estimations of low energy excitations for the large-scale
system. To solve the most important issue on the spin glass in the future, the
reliability of the numerical simulations is strictly appraised.

In the present contribution, we show a systematic analysis related with the phase
diagram on the spin glass, which is also applicable broadly in random spin systems.
Unfortunately we cannot give a direct solution on the issue mentioned above on the
spin glass, but can contribute to the development of the numerical approaches in
terms of setting the benchmarks for their reliability. Very little analytical systematic
work exists in the random spin systems, especially for the spin glass. An exception
is a symmetry argument using gauge invariance. We have some rigorous results in
a limited subspace with the gauge symmetry on the phase diagram, the Nishimori
line, for several types of the random spin systems [34]. These exact and rigorous
results have succeeded in clarifying a part of problems related with the structure of
the phase diagram for several random-bond Ising models. One of the possibilities
for the establishment of the systematic theory is considered to elucidate the deep
meaning of the role of the gauge invariance for the spin glass. In this thesis, several
random-bond Ising models with the Nishimori line are analyzed by the further use
of a symmetry, the duality as explained below and then we establish an analytical
systematic approach for the phase transition in the spin glass by the development
of the theory using the gauge invariance on the Nishimori line.

We first restrict ourselves to the +.J Ising model, which is our main platform
to establish a new method. First we explain the published results related with the
structure of the phase diagram especially in two-dimensional system in the next
section.



1.3 Phase Diagram and Multicritical Point 19

Y
Y

Pe Do

DPe = Po

Figure 1.6: Two possible phase diagrams of the +.J Ising model. The left panel gives
the case for p. # po (the reentrant scenario). The right one is for p. = py (the vertical
scenario). The dashed line stands for the Nishimori line. The point denoted as MCP is
the multicritical point.

1.3 Phase Diagram and Multicritical Point

A great number of investigations of the phase diagram of the random-bond Ising
model in the two- and three-dimensional systems have been carried out mainly by
numerical approaches such as series expansion, transfer matrix, and Monte-Carlo
simulation for the finite-temperature region. In addition, some computing algo-
rithms for an optimization problem are applied to the observation of the phase
transition in the ground state.

The phase diagram of the 4.J Ising model is restricted to two possible scenarios
with the reentrant and vertical phase boundaries as in Fig. 1.6 from the prediction
by a correlation inequality with the gauge invariance. The dashed line denotes the
special line with the gauge symmetry, namely the Nishimori line [3, 34]. On the
Nishimori line, we can obtain the exact internal energy, the upper bound for the
specific heat, and several types of correlation inequalities. This is a piece of few exact
results for finite-dimensional systems. In addition, the free energy of the +.J Ising
model on the Nishimori line has a relationship with the distribution of frustration
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De Value Method Size Year

SQ £J 080(1)  MCRG 64 % 64 Ozeki, et. al. (1987) [52]

SQ +J  0.889(2) Transfer Matrix 14 x 10° Ozeki, et. al. (1987) [53]

SQ +J  0.886(3) Series Expansion 19th order Singh, et. l (1996) [54]

SQ +J  0.8872(8)  Non-equilibrium 2501 x 2500, Ozeki, et. al. (1998) [55]

SQ +£J  0.8905(5)  Transfer Matrix 14 x 10® Aarao Re1s et al. (1999) [56]

SQ +J  0.8906(2)  Transfer Matrix 12 x 10° Honecker, et. al. (2001) [57]

SQ +J  0.8907(2)  Fermionic TM 32 x 2 x 108 Merz, et. al. (2002) [58]

SQ +J  0.8900(5)  Transfer Matrix 12 x 105 de Queiroz (2003) [59]

SQ +J  0.8894(9) Nom-equilibrium 10001 x 10000, Ito, et. al. (2003) [60]

SQ +J  0.8906(2)  Transfer Matrix 12 x 10° Picco, et. al. (2006) [61]

SQ £J  0.89081(7) Monte-Carlo 64 x 64 Hasenbusch, et. al. (2008) [62]
Cubic £J 0.767(4)  MCRG 32%x32%32  Ozeki, et. al. (1987) [52]
Cubic £J 0.7656(20) Series Expansion 17th order Singh (1991) [63]

Cubic +J 0.7673(3)  Non-equilibrium 161 x 161 x 162 Ozeki, et. al. (1998) [55]
Cubic +£J 0.76820(4) Monte-Carlo 80 x 80 x 80 Hasenbusch, et. al. (2007) [64]

Table 1.1: The location of the multicritical point p. for the +.J Ising model estimated
by various approaches. MCRG means the Monte-Carlo renormalization group and TM
expresses the transfer matrix.

[48]. The interest of the Nishimori line goes further, since it has been shown that this
line is invariant under renormalization [49, 50, 51]. If we see again the phase diagram
of Fig. 1.6, we find that the intersection of phase boundaries between three phases
is located on the Nishimori line. This is the multicritical point. The multicritical
point is a nontrivial unstable fixed point from a point of view of the renormalization
group [49, 50, 51]. Because of the simple form of the Hamiltonian and distributions
of the random couplings .J;; of the +.J Ising model, a number of estimations exist
and their results are listed in Table 1.1. It is thus now very adequate time that
we construct a new analytic theory related with the phase transition in random
spin systems, because we have many references as in Table 1.1, the locations of
the multicritical point, for the validity of the theory which will be established in
this thesis. In addition, the multicritical point is located on the Nishimori line, on
which the gauge invariance and several exact and rigorous results are available. The
results on the Nishimori line have played a role of the judgment of the reliability of
the numerical methods. Recent development of the computational power and the
guidance by the properties of the Nishimori line have given great progress of the
numerical methods in the random spin systems. Conversely, in this thesis, we use
many results for the location of the multicritical point by the numerical approaches
as references of validity of our study. At this time, we have to be attentive to even
a small difference between our predictions and numerical estimations.
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Nevertheless, unfortunately, the numerical estimations include some conflicts
that the multicritical point is expected to be located at about p. &~ 0.8900 [59, 60]
or p. ~ 0.8908 [57, 58, 61, 62] on the two-dimensional square lattice. The conflict
of p. = 0.8900 versus p. =~ 0.8908 without overlap of the error bars is very small
but a serious problem on the reliability of each numerical calculation. It is thus
worthwhile to establish a technique to derive the location of the multicritical point
with the higher precision to the fourth digit than the current numerical estimations
to solve this conflict and to provide a new standard reference for the numerical
methods in the future.

We should remark that our study is initiated by not only such problems on the re-
liability of the numerical estimations but also an intrinsic interest in the multicritical
point and the physics behind its property. Despite recent analytical approaches by
supersymmetry [65], the exact characterization of the universality class of the mul-
ticritical point is also still unknown. For accurate analysis of the critical behaviors
around the multicritical point and precise estimations of the critical exponents, de-
termination of the location of the multicritical point is essential and important work
also in this sense. Further interest in the location of the multicritical point stems
from analogies with the quantum Hall transition [65, 66, 67, 68] and applications
in coding theory for the classical [69, 70, 71, 72] and quantum [73, 74] information
processing.

Let us take a look also at the ground state briefly. As seen in Fig. 1.2, frustration
generates unsatisfied bond with the extra energy such as —.J;;5;S; = J. In addition,
pair of the plaquettes under frustration arises adjacently to an antiferromagnetic
bond. Therefore we have to find the set of minimal-length strings connecting frus-
trated plaquettes to minimize the whole energy of the +.J Ising model. Searching
the ground state of the +.J Ising model is one of the classes of the optimization
problems. An increase of concentration of the negative sign for J;; of the +J Ising
model expressed by the value of 1 — p destroys ordered state. The location of the
critical point in the ground state is expressed as py as in Fig. 1.6. We list the pre-
viously published results on the location of py in Table 1.2. The location of such a
transition point pg is one of the targets of studies on the random-bond Ising model.
This is why the ground state of the random-bond Ising model corresponds to one of
the classes of optimization problems, which is the Chinese postman’s problem and
solved by an efficient algorithm [81, 82, 83]. A further interesting reason is to verify
the verticality to the p-axis of the phase boundary in the region under the Nishimori
line as in Fig. 1.6, which is predicted by an argument from a point of view of the
entropy of the distribution of frustration [48], and expected by the result of analysis
used by a modified mathematical model from the +.J Ising model [84]. Therefore
we need results with high precision for the locations of the multicritical point p. and
the critical point py in the ground state to judge two possible scenarios of the phase
boundary under the Nishimori line.
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Do Value Method Year
SQ +J ~ 0.901 Series Expansion Grinstein et. al. (1979) [75]
SQ +J 0.895(1) Matching Algorithm Freund et. al. (1989) [76]
SQ +J 0.892 < p. < 0.905 Matching Algorithm Bendish et. al. (1994) [77]
SQ +J 0.896(1),0.894(2)  Exact Ground State Kawashima et. al. (1997) [78]
SQ +J 0.885 Ground State Emulation Blackman et. al. (1998) [79]
SQ +J 0.8969(1) Exact Ground State Wang et. al. (2003) [74]
SQ +J 0.897(1) Exact Ground State Amoruso et. al. (2004) [80]

Table 1.2: The location of the critical point py in the ground state.

Before closing this section, again we emphasize that the results shown above are
by numerical simulations and estimations because, for finite-dimensional system, we
have little analytic and systematic approaches. We show a new analytical systematic
study, using the duality, to derive the exact, or highly precise, location of the critical
points, especially the multicritical point lying on the Nishimori line, of the random-
bond Ising model in the present contribution. The additional purpose of this study is
to provide the standard reference for the reliability of various numerical approaches,
as well as resolution toward the conflict between p. ~ 0.8900 and p. ~ 0.8908. The
results obtained in this thesis show indeed the very close coincidence to a part of
the current numerical estimations, which are considered to be correct answers, with
very high precision.

1.4 Conjecture

In the previous section, we reviewed the published results on the location of the
critical points of the +.J Ising model, especially the multicritical point on the square
lattice. We mentioned that our purpose is to derive the location of such critical
points in random spin systems.

We deal with the multicritical point mainly by a technique of a symmetry, namely
the duality, which has been one of the analytical tools to obtain the exact location
of the critical points in non-random spin systems [85, 86]. For the last decade,
the conjecture on the location of the multicritical point has been proposed [87,
88]. The conjecture is established by the duality with the replica method and the
gauge symmetry on the Nishimori line. The conjecture predicts the location of the
multicritical point for the +.J Ising model on the square lattice as p. = 0.889972
[87, 88]. This prediction is in good agreement with a part of the published results
within their error bars as seen in Table 1.1. It was first believed that the conjecture
pe = 0.889972 is the exact solution. However, some cases show that the conjecture
is outside the accuracy range of numerical results. In addition, there is a more
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serious problem on the validity of the conjecture. The conjecture was applied to the
multicritical points on hierarchical lattices with nesting units of bonds, on which
the renormalization group analysis should be exact [89, 90, 91]. The conjecture
derived different answers from the exact results obtained by the renormalization
group analysis [92].

It is thus important work to elucidate the reasons why such deviations exist
between the conjecture and the exact results on the hierarchical lattices. We should
reconsider the validity of the conjecture especially on the hierarchical lattices. This
investigation improves the conventional conjecture on the hierarchical lattice and,
moreover, gives a possible way to analytically derive the precise locations of the
multicritical point for the +.J Ising model also on the regular lattices such as the
square, triangular, hexagonal lattices. Along this line, we propose an analytical
technique to derive the location of the multicritical point with precision to the fourth
digit and open up a way to obtain an exact solution or a very close estimation to
the answer in finite-dimensional random spin systems in this thesis.

1.5 Overview of Thesis

We describe the organization of this thesis below.

In the next chapter, the duality and its applications are detailed. The way
how to derive the critical point in non-random spin systems is given as well as the
application of the duality; the calculation of the exact value of the internal energy.
In this chapter, we also show applications of the duality to other lattices than the
square lattice.

In Chapter 3, there are introductive sections for the random-bond Ising model
and the replica method. We explain the gauge transformation and review the results
obtained on the Nishimori line. The duality for the random-bond Ising model is
considered here and several problems are also pointed out.

Chapter 4 is written about the conjecture on the location of the multicritical
point. We focus on the duality on the Nishimori line. All of the results previously
obtained by the conjecture are shown and compared with the existing results by
other approaches. After that, we show the cases on the hierarchical lattices with
deviations between the conjecture and the exact answers by the renormalization
group analysis.

Chapter 5 is one of the most important parts of this thesis. The improved
conjecture for the hierarchical lattices is considered in this chapter. The idea for
improvement is inspired by the renormalization group analysis on the hierarchical
lattices. We show that the obtained locations of the multicritical points by the
improved version of the conjecture are in better agreement with the exact results by
the renormalization group analysis than those by the conventional conjecture. The
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improvement influences the duality in other regions as well as the Nishimori line.
The slope of the critical point on the phase diagram is estimated and is closer to the
exact solution than the conventional conjecture, which has failed to derive a precise
slope.

In Chapter 6, we establish the improved conjecture as a reliable tool to derive the
precise location of the multicritical points on the regular lattice. We can gradually
increase the accuracy of the predictions by a systematic way. Therefore, if we
estimate the location of the multicritical point by the systematic way, the predicted
locations of the multicritical points converge on some point, which is expected to
be the exact solution. We show that this improvement is also successful in several
regions as well as the Nishimori line, and other random spin systems than the spin-
glass models.

In the last chapter, we summarize our results and the properties of the improved
conjecture.



Chapter 2

Duality Transformation

Our goal in this thesis is to derive the critical points in random spin systems. One of
the useful tools to obtain the exact location of the critical point is the duality. This
technique has been applied to spin models without randomness. The duality for the
random spin systems has been also considered. One of the applications of the duality
for the random spin systems is the conjecture on the location of the multicritical
point in the random spin systems as discussed in Chapter 4. Before going into the
application to the random spin systems, we review detailed formulations and roles
of the duality in this chapter.

2.1 Symmetry of Partition Functions

We first remark what we can derive from the duality before the detailed calculation.
The duality is very useful especially in spin systems defined on two-dimensional
lattice to analyze the location of the critical points. Additional applications are
the derivation of the exact value of the internal energy and the restriction of the
behavior of the specific heat by the duality.

Originally the duality was proposed by the symmetry found between the high-
temperature and low-temperature expansion of the partition function of the non-
random Ising model on the square lattice [85]. Let us first take a look at the explicit
form of the high-temperature expansion of the Ising model. The Hamiltonian of the
non-random Ising model is defined as,

H=-Y"1JSS; (2.1)
(i)

where S; takes integers +1, and J denotes the uniform interaction between two
spins. The summation is taken over the nearest neighboring pairs of spins. The

25
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partition function is given as,
Z(K)=>_ [ (2.2)

Here we use the coupling constant K defined by K = .J for simplicity. We use an
identity to consider the high-temperature expansion,

%% = cosh K + S;S; sinh K. (2.3)

Using this identity, we step to establish the high-temperature expansion (tanh K <
1) as follows,

Z(K) = (cosh K)Ne <1+Ztanth > 11 ss) (2.4)

m bonds m pair

Here the summation with the subscript “m bonds” is over the any configurations
with m bonds and the product is over m pairs of 5;S;. The quantity Np denotes the
number of the bonds. However the terms without constructing closed path vanish
after the summation over {S;}, because of the property that ¢ S; = 0 as shown
in Fig. 2.1. Therefore we obtain the following expression of the high-temperature
expansion, as a result,

Z(K) = 2" (cosh K)"» ) " tanh™ K, (2.5)
C

where N, is the number of the sites, C' denotes the summation over the closed paths
and m expresses the length of each closed path. The minimum length of the closed
path is m = 4 and forms the elementary square. The number of such closed path is
N;.

On the other hand, the low temperature expansion (e 2% < 1) is given as, by
consideration of contributions by flipped spins from the ground state as in Fig. 2.2,

Z(K) =2eM5 (14 Nye % +... ), (2.6)
where 2eV2K corresponds to the partition function for the ground state. The term
e 8K arises from the contribution of 4 bonds surrounding one flipped spin and we

can find N; terms. which are similar to the closed paths.

If we compare two symmetric expansions, we find the correspondence between
closed paths around the plaquettes and bonds around flipped spins at sites. In
addition, we prepare two partition functions Z(K*) and Z(K) in low and high-
temperature regions, respectively. The low-temperature expansion for Z(K*) and
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Figure 2.1: The high-temperature expansion. Each cluster of the bold bonds de-
A4).  After the summa-
tion over spin variables {S;}, we obtain the following terms (a) > (545152 = 0,
(b) > (s,1(5354)(S15)(S556)(S6S3) = 2™+, and (c) Yq,)(S7Ss)(SsS9) = 0. There-
fore the high-temperature expansion corresponds to the collection of the contributions of

notes the example of the configuration appearing in Eq. (2

the possible closed paths on the square lattice as in the right panel.
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Figure 2.2: The low-temperature expansion. The filled circles are up-pointing spins, and
the white site denotes flipped spin from the ground state. The bold bonds express the

excited bonds with the contribution e 2X. Such a contribution is described as a closed

path on another lattice as in the right panel.
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the high-temperature expansions for Z(K) establish the relationship between two
different couplings,

e %" = tanh K. (2.7)
Using this relation, we can construct an equation,

2y = 2oL KT oy (2.8)

2eNBK*

Therefore we can find a relationship between the low-temperature partition function
defined on the original square lattice and the high-temperature partition function
defined on another square lattice. We can identify two square lattices especially
in the thermodynamic limit (Ny — o0), though they are different from a strict
observation. We use this symmetric property, the duality, of the spin systems in the
following discussions.

However it is slightly inconvenient to apply the duality, the relationship between
the low and high-temperature expansions, to other types of spin models and different
forms of the lattices. In the next section, we introduce a general formulation of the
duality for such applications by use of the Fourier transformation [86].

2.2 General Formulation of Duality

We restrict ourselves to the application of the duality for two-dimensional spin sys-
tems. The duality gives a relationship between two different non-random spin sys-
tems, in terms of partition functions and structure of lattices. We express the trans-
formation of the lattice in Fig. 2.3. The general manner of change of the lattice is
interchange between sites of the original lattice (black colored sites) and plaquettes
of another lattice and conversely, as seen in the previous section. The black colored
sites are the ones on the original lattice, which correspond to the plaquettes on an-
other lattice, and the white-colored sites are the ones on another lattice, which are
originally located at the plaquettes of the original lattice. We sometimes obtain the
same form of a lattice as the one before the application of the duality. Such a lattice
is called the self-dual lattice. For example, the square lattice is one of the self-dual
lattices as in Fig. 2.3. The triangular lattice is not self-dual and related with the
hexagonal lattice as in Fig. 2.3. Such pair of the lattices is called the mutually dual
Pair.
Another transformation by the duality is for partition functions as,

Z2(K) = AZ5(K), (2.9)

where Z(K) is the partition function with a coupling constant K for the original
spin system defined on the original lattice as the top figures in Fig. 2.3, and Z}; is
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Figure 2.3: The top figures are the original lattices. The left figure is the square lattice,
the middle one is the triangular lattice, and the right one is the hexagonal lattice. The
bottom figures are the dual lattices.

that for another spin system defined on another lattice as the bottom figures in Fig.
2.3. The subscript “D” on the right-hand side expresses that the form of the lattice
is different from the original system, and the asterisk means that the functional form
of the partition function on the right-hand side is different from the original one.
As seen in the previous section, the low-temperature partition function of the Ising
model on the square lattice corresponds to the high-temperature one. However we
cannot always find such a simple correspondence between two partition functions
before and after the duality. The coefficient A is an important factor to derive the
critical point as detailed in the following section.

In the case for the self-dual lattices as the square lattice, the relation is reduced
to Z5(K) = Z*(K). We can derive the exact location of the critical point for
systems by the duality, when the partition function is written by a single-variable
function. In other words, the resulting partition function after the duality has the
same dependence on the coupling constant, or equivalently the temperature, as the
original partition function. Then we can establish the following relation,

Z4(K) = Z(K*), (2.10)

where K* stands for another coupling constant. Consequently, the relationship in
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Figure 2.4: The schematic relationship between K and K*.

Eq. (2.9) can be written as,
Z(K)=AZ(K™). (2.11)

This is called the duality relation. Detailed calculations for several examples are
given in following sections. Now we show the useful properties for analysis of spin
systems obtained from the duality relation (2.11).

2.2.1 Critical Point

If the system under consideration has a unique critical point, the duality relation
(2.11) can give the exact location of the critical point. The duality relation (2.11)
establishes the relationship between the two values of the coupling constants as
K*(K). When monotone decrease of K* for the increase of K is satisfied, (e.g.
K* — 0 for K — 00) the duality relation gives a connection between the partition
functions in high and low-temperature regions for the spin model under consideration
as in Fig. 2.4. We can then find the fixed point as the boundary between the low
and high-temperature region, which gives the location of the critical point as,

K=K=K.,. (2.12)

Then the coefficient A of the duality relation for the partition functions as in
Eq. (2.11), becomes unity. This is a special feature of the duality relation for
the partition functions (2.11) only at the fixed point of the duality, which is used
throughout this thesis.

2.2.2 Exact Value of Internal Energy

The internal energy is given by the derivative of the free energy. If we find the
duality relation in terms of the partition function as in Eq. (2.11), we obtain the
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following equation by taking a logarithmic derivative of the duality relation as,

d dK*
—log Z(K) T
K*

— L P e Z(K
TR + og Z(K)

(2.13)

This equation gives a relation between the internal energies at different temperatures
corresponding to K and K*. Setting K = K* = K, we predict the exact value of
the internal energy at the critical point by Eq. (2.13) as follows, if the internal

energy is continuous,
B (1 dK* >‘1 dA
K. dK |k, dK

where we used the identity A = 1 at the critical point.

B(K,) = — L log Z(K)

pie (2.14)

Y
K.

2.2.3 Specific Heat

We can infer the behavior of the specific heat at the critical point by the duality
relation (2.11), that is whether it is continuous or not. We obtain the relation of two
specific heats by the derivative of the free energy, similarly to the internal energy.
The derivative by K of Eq. (2.13) gives

~T?’C(K) ! <dA>2 _ LA T?C(K*) + E(K*)dQK* (2.15)

~ A \dK) T AdK? dK?’

Therefore, near the critical point expressed by K = K.+ § and K* = K, — ¢, the

difference between the specific heat in low and high-temperature regions is given by
~T*{C(K,+ ) — C(K.—6)}

(AN O\ 2A LK)\ dA

B (dK K) dK? | ( dK K) dK
The specific heat will be divergent near the critical point or will be continuous
through the critical point when all the terms on the right-hand side vanish. On
the other hand, the specific heat will be discontinuous if the right-hand side gives
non-zero value.

We show several detailed calculations to obtain the duality relation and demon-
strate the above introduced applications in the following sections.

A’ K*
dK?

. (2.16)

K. K.

2.3 Duality on the Square Lattice

We give several examples of calculations of the duality on the square lattice here.
The Ising model and the Potts model on the square lattice are considered.
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¢$3 =0

Figure 2.5: The duality for the simple four bonds. The filled circles express the summed
spins in the evaluation of the partition function.

2.3.1 Simple Lattice

Let us consider the duality to a simple lattice as in Fig. 2.5, before going into the
case of the square lattice. We can find a significant feature of the duality through
this simple lesson. We consider a g-component spin system as well as the Ising model
(¢ = 2) for general applications of the duality to other spin systems. The partition
function for spin systems only with nearest neighboring interactions is given as,

7= T]=(¢: — ¢, (2.17)

{¢:} (ig)

where {¢;} denotes the summation over all the spin variables between 0 and ¢ — 1,
and the product runs over all the bonds on the lattice. The quantity z is called
the edge Boltzmann factor. This edge Boltzmann factor has ¢ elements denoted as
x(0),2(1),--- ,2(¢ — 1), and depends on the difference between neighboring spins.
In addition, we assume that this g-component spin system has the edge Boltzmann
factor with a period ¢, that is the so-called Z, model. For example, the non-random
Ising model, the Hamiltonian is usually written as in Eq. (2.1). We here use another
expression for convenience as follows,

H= —JZCOSﬂ'¢i]‘, (2.18)
(ig)
where ¢;; = ¢; — ¢;, the spin variable ¢; takes the integer of 0 and 1. Therefore

m¢;; denotes the difference of the angle between the neighboring spins. We take the
difference of spins ¢;; from top to bottom ¢i9 = ¢1 — ¢ and o3 = Py — @3, and
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from left to right ¢4 = ¢4 — ¢p and ¢Pga = Py — ¢ in Fig. 2.5. Then the partition
function is written as,

7= []e*mm, (2.19)

{¢i} (i)

where we use again here the coupling constant K which is the product g.J. The
edge Boltzmann factor for the Ising model is,

Tk (¢i;) = exp {K cos (m¢;j)} . (2.20)

We regard the partition function as a multi-variable function of the set of the values
of the edge Boltzmann factor. We express this fact by the angular brackets as Z[]
in this thesis for simplicity. In addition, for the Potts model, the Hamiltonian is
defined as

H==736(0y) (221)
(g}

where ¢;; also expresses the difference of orientation between the neighboring spins,
which takes the integer from 0 to ¢ — 1. we can obtain the edge Boltzmann factor,
from eX for parallel state and 1 for the others,

T (¢ij) = exp { K0 (¢i;)}, (2.22)

We define the dual Boltzmann factor as, by the Fourier transformation,

q—1
$ij=0

and, as the inverse transformation,

1 & 2
z(pij) = % k;o x* (kij) exp <1§kij¢ij> ; (2.24)

where we omit the subscript K because of the absence of confusion.

We write the partition function for a system with four bonds and spins on four
sites up {¢; = 0} as in Fig. 2.5,

Zlx) =Y a* (o), (2.25)
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where x is the edge Boltzmann factor for a single bond. We here use the form of the
Fourier transformation of the edge Boltzmann factor (2.24) and substitute it into
the above relation,

4 q—1
Zlzx] = <i> Z x* (k12) 2" (kos)x™ (ksa)x™ (ka1) Z exp {iQ—W(ku + koz + k31 + k41)¢0} .
Vi {ki;} $0=0 q

(2.26)

The summation over the site variables ¢g gives the Kronecker’s delta,

1 ! * * * *
Z[l‘] =q (%) {kz”:}l’ (klg)fl,’ (k23)fL’ (k34)fL’ (k41)5 (klg + kgg + k31 + k41) . (227)

Therefore the partition function is transformed into the summation over bond vari-
ables k;; with restrictions by the Kronecker’s delta with modulus ¢. We introduce
new variables {k;}, which satisfy the constraint by the Kronecker’s delta,

kiog = ki — ko, koz = ko — k3, k31t = ks — ki, kg = ks — k. (2.28)

One notices that the contribution to the partition function is invariant if we shift
these variables {k;} to {k; + u} by an integer u from 0 to ¢ — 1. We should remove
this arbitrariness by dividing the partition function by ¢q. We then find that the
partition function is transformed into the one with the dual edge Boltzmann factor
x* and dual site variables {k;},

1 1 ! * * _ * _ x* _
Z[x] = 5q<%> > wt(ky — ko)a (ks — ka)a* (ks — ka)2™ (ks — ky).

{k:}

We emphasize the following features found in this relation, The factor 1/¢ on
the right-hand side is by arbitrariness of the dual site variables {k;}. The next
factor ¢ is obtained by the summation over the spin variable ¢ on the original site,
whose exponent is given by the site number Ny, = 1. In addition, (1/\/5)4 is given
as the factors by the Fourier transformation for the edge Boltzmann factors. The
number 4 stems from the number of the bonds Ng = 4 on the original lattice as in
Fig. 2.5. As the most important fact, we look at the product over four dual edge
Boltzmann factors around the original site. Their arguments express that the dual
system consists of four bonds and four sites connected with each other as in Fig. 2.5.
We thus find that the form of the lattice is changed from the left-hand side figure
to the right-hand side one in Fig. 2.5, and the duality transforms the original edge
Boltzmann factor x into the dual one x*. The changes of the lattice are regarded
as the interchanges between the original sites and the dual plaquettes and between
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Figure 2.6: Two examples of the duality. The top figures express the original lattices and
the bottom figures are their dual systems. The filled sites are the target of the summation,
while white ones are fixed in up directions.

the original plaquettes and the dual sites. In addition, the orientations of the bonds
rotate 90 degrees. These properties of the duality found in all the lattices [86]. We
show two further examples describing the change of the lattice in Fig. 2.6.

We expect that the duality for a general lattice gives a relation as, by the features
explained above,

Zlx] = ¢V 1 Zp[at], (2.29)

where D expresses the lattice in a different form from the original lattice.
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Figure 2.7: The sites and plaquettes on the square lattice.

2.3.2 Square Lattice

We write the partition function for a system defined on the square lattice as,

square

=> H (2.30)

{8} (i4)

Substituting the form of the Fourier transformation of the edge Boltzmann factor
(2.24) into the partition function, we can rewrite Eq. (2.30) as

Zm:(%) {Z}H b %Hp{— bolos =00 ). (231

Here we consider the product of the exponential terms over all the bonds on the
right-hand side, similarly to the case of the simple lattice. Asin Fig. 2.7, we consider
the adjacent four bonds to the site ¢;, and take the summation over this site variable
as follows,

square
Z H exp{l— ij ¢ ¢])}

{#:i} ()

—ZHexp{ —kyi + kin + kiz — ki) z}—q Hé —ki + ko + ks — ki)

(2.32)

The partition function can be regarded as the summation over bond variables k;;
with restrictions by the Kronecker’s delta with modulus ¢ as in Eq. (2.27). We
introduce again new variables {k;}, similarly to the simple case,

ki =k —kaoy, kip=—(ka —ks), kiz=—(ks—Fkq), ku=4ki—k, (2.33)
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These variables satisfy the constraints expressed by the Kronecker’s delta in Eq.
(2.32). As a result, we obtain a relation with another partition function with the
dual edge Boltzmann factor z*,

Zlz] = ¢% 20 z* (ki — k;)

= Pz, (2.34)

where “square(D)” denotes that the product of the dual edge Boltzmann factors is
over the bonds on the square lattice only with the different boundary condition as
considered above as in Figs. 2.5 and 2.6. The subscript D of the partition function
also expresses such a difference of the lattice. Here Ny and Np in the exponent of
the power expresses the number of the sites and bonds, respectively, and —1 stem
from the removal of the arbitrariness of {k;}, similarly to the simple lattice. If we
consider the thermodynamic limit of Ny — oo, the exponent of —1 is negligible. In
addition, the difference of the boundary conditions of two square lattices can also
be ignored. We can identify Z with Zp.

The duality relation (2.34) for the square lattice is thus reduced to, because
NB = 2N5,

Z[x] = Z[z*]. (2.35)

2.3.3 Ising Model

We consider the Ising model as an explicit example of the duality. The edge Boltz-
mann factor is given by Eq. (2.20). The dual Boltzmann factor is, as calculated by
Eq. (2.23),

1
.CU*K(kZ]) = ﬁ (eK + e*K COS Wkij) . (236)

We introduce the principal Boltzmann factor written as xy(K), which is defined as
the edge Boltzmann factor of the state with edge spins parallel ¢;; = 0. In the case
of the Ising model, zo(K) = X from Eq. (2.20) and z}(K) = (e + e %)/v/2 from
Eq. (2.36). We extract these principal Boltzmann factors from the partition fuction
to measure the energy from the state with ¢;; = 0 by dividing each edge Boltzmann
factor zx by x¢(K), as follows,

xO(K)NBz[ iy ]:xS(K)NBz{ Tic } (2.37)
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where z is the normalized partition function. Considering arguments of two normal-
ized partition functions, we find an important relationship for deriving the location
of the critical point.

ZLC:”(I;{)] = 2 (1,e2K) (2.38)
4%] — (1, tanh K). (2.39)

Only the arguments zx(1)/2o(K) = e72% and 2% (1)/x(K) = tanh K are different
between both normalized partition functions. If we use another coupling K* sat-
isfying e 28" = tanh K, the duality relation (2.37) yields the relationship between
the two Ising models with different couplings as

2o(K)VP2(1,e72) = z5(K)NP2(1,e72K7)

— Zzk] = {;03((;))}%xO(K*)NBz(Le—?K*)
— Zlax] = {;”03((;))}% Zlox-], (2.40)

where we multiply the normalized partition function by the principal Boltzmann
factor xo(K) on the left-hand side in the second line and put the principal term
xo(K*) with another coupling K* back the partition function on the right-hand side
in the last line. The extra coefficient A in this relation is explicitly rewritten as,

A= {;03((;)) }NB — (sinh 2K) 7. (2.41)

In addition, the relation e ?%" = tanh K shows a monotone decrease of K* for

increase of K. We also find that K — 0 for K* — oo, and inversely K — oo
for K* — 0 are satisfied. Therefore we can interpret that the relation e 25" =
tanh K gives a connection between the two partition functions in high and low-
temperatures as shown in Eq. (2.8). As a result, we can predict the critical point
as e~ 2Ke = /2 — 1 = (.414214, or equivalently T, = 2.26919 from the fixed point of
the duality e 2Xc = tanh K,. We can also confirm the fact that A becomes unity by
substituting K, into Eq. (2.41).

The exact value of the internal energy at the critical point is also obtained as
—V/2N, from Eq. (2.14). Moreover the specific heat is considered to be continuous
or divergent at the critical point by the vanishment of the right-hand side of Eq.
(2.16) at K = K.. These predictions by the duality are consistent with the exact
solutions [93, 94].



2.3 Duality on the Square Lattice 39

2.3.4 Potts Model

For the Potts model, the edge Boltzmann factor is defined as in Eq. (2.22), and the
dual Boltzmann factor is given as,

v (ki) = % [ 14 g6 (ky)} - (2.42)

Similarly to the case of the Ising model, we consider the relation (2.37) of two
normalized partition functions by the principal Boltzmann factors. Only the ar-
guments zx(1)/2o(K) = zx(2)/2o(K) = -+ = x2x(q — 1)/z0(K) = e ¥ and
vic(1)/25(K) = 23 (2) /a§(K) = -+ = i (q — 1) /a5 (K) = (e —1)/(e” +¢—1) are
different between the two normalized partition functions in the duality relation for
the Potts model as,

TK K K
2 |l——=| = z(l,e™,--- e 2.43
LU(K)] ( ) ( )
* K K
Ty e —1 e —1
— = 1 . 2.44
ZLUS(K)] Z( el g -1’ ’eK+q—1> (2.44)

If we introduce the dual coupling satisfying the relation given by

= —. 2.45

e

we can obtain a similar relationship between two Potts models with different cou-
plings K and K* to the one as in Eq. (2.40). The extra coefficient A differs

from the case of the Ising model and is calculated as, from zo(K*) = eX" and

v (K) = (" +q—1)/ /1,

* K NB K _ 1 Np
A= { 7 () } - (e ) . (2.46)
This extra coefficient becomes unity at the critical point given as, by setting K =
K*=K,

el = /g +1. (2.47)

The internal energy is computed as F(K.) = —N,(1 +1/,/q). For the Potts model
with the state number ¢ < 4, this value indeed gives the exact value of the internal
energy [95]. On the other hand, the Potts model with ¢ > 4 undergoes a different
phase transition, the first-order transition, with discontinuity of the internal energy,
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that is F(K. — d) # E(K.+ J) for infinitesimal ¢ [95]. We use a modified relation
of Eq. (2.14) given as, for such cases,
dK* dA

B(K,—0)=———| .
dK |, ( ) dK | .

E(K,+6) — (2.48)
Fortunately the value of dK*/dK|,_, becomes —1 at the transition point. There-
fore we can obtain the value of the average between two internal energies in the lower

and higher-temperature regions of the transition point. The value of the average for
the Potts model with ¢ > 4 is,

Eav(K.) = Ny(1+1//q). (2.49)

This result coincides with the exact solution [95].

2.4 Duality on the Triangular Lattice

The duality is also applicable to the triangular lattice similarly to the case of the
square lattice and the resulting duality relation of the partition functions is again
given by Eq. (2.34). However the dual lattice is different from the original one.
The dual lattice for the triangular lattice is the hexagonal lattice as in Fig. 2.3.
Therefore we cannot establish a relationship between two partition functions on the
same triangular lattice. We use another technique with the duality to give a direct
transformation from the triangular lattice into another triangular lattice [95]. Let
us describe this transformation below and its application.

2.4.1 Simple Triangle

First we explain another technique to relate two partition functions defined on the
triangular lattice through the consideration on a single down-pointing triangle as in
Fig. 2.8. We consider the partition function for this system with three bonds and
three sites,

Zrwlz] =) w(dr — ¢o)a(do — ds)a(ds — 1), (2.50)
{#i}
We find that the sum of the arguments, ¢; — @9, ¢o — ¢3 and ¢3 — ¢y, in three edge

Boltzmann factors equals to zero. We can hence rewrite this partition function as,
using the new variables {¢;;} taking values from 0 to ¢ — 1 and Kronecker’s delta,

Zrr|z] = ¢ Z T(P12)x(P23) T (31) (P12 + Doz + ¢31), (2.51)
{¢:j}
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Figure 2.8: The duality for a single down-pointing triangle. The filled circles are the
targets of the summation in the calculation of the partition function. The middle figure is
the lattice after the duality, and the right figure expresses the lattice after the star-triangle
transformation.

where the overall factor ¢ on the right-hand side reflects the invariance of the system
under the uniform change ¢; — ¢; +1 (for Vi 0 < 1 < ¢ — 1). We rewrite the
Kronecker’s delta as an exponential form,

Zrr[z —q—z Z (¢12)z(d23) (¢31) o (Pratoestdanlko (2.52)
T ko= 04{¢ij}

We can take the summations over {¢;;}. The Fourier transformation of the edge
Boltzmann factor x in Eq. (2.24) enables us to rewrite this equation as,

Zrr|z] = Z {*(ko)}>. (2.53)

ko=0

We then find that the partition function is transformed into the one with the dual
edge Boltzmann factor z* and dual site variables ky. We can interpret that the
partition function is transformed into the one of a system with three bonds and one
site in a star shape as in Fig. 2.8 in a similar manner of change of the lattice to
the case of the square lattice. If we calculate the summation over the single site
variable ky, we obtain another partition function with the dual edge Boltzmann
factors on the up-pointing triangle as in Fig. 2.8. This summation is called the star-
triangle transformation. We thus obtain the following relation for the two partition
functions,

Zwnls] = 4 7 () Zowule’) (2.54)

These partition functions are defined on the triangular lattices but their boundary
conditions are different as denoted by D. One finds that the factor ¢ on the right-
hand side reflects a symmetry of the invariance of the uniform change of ¢; — ¢; +1,
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Figure 2.9: The duality for the triangular lattice. After the duality, the partition function
on the triangular lattice is transformed into another partition function on the hexagonal
lattice.

the exponent of 1/q expresses the number of the plaquette denoted by Np and that
of /g means the number of the bonds. The simple lesson here gives and inference
that the duality for the triangular lattice is given by a relation,

N
Zrrlz] = qlfNDJrTBZD,TR[JC*]- (2.55)

This is reduced to, by the Euler’s relation Ny + Np = Np + 1,

Np

Zrrlz] = ¢ Zpar(z’]. (2.56)

The duality relation is again obtained similarly to the case on the square lattice.

2.4.2 Triangular Lattice

As seen in the previous example, a set of three edge Boltzmann factors always
appear in the calculation of the duality for the triangular lattice. It is thus better
to introduce the face Boltzmann factor for three bonds on an elementary triangle
written by Ag(é12, 923, 31). For example, the face Boltzmann factor for the Ising
model is

AK(¢12, ¢23, ¢31) = exp {K (COS 7T¢12 4+ cos 7Td)23 4+ cos 7T¢31)} 5 (257)

where ¢;; = ¢; — ¢; and the subscripts denote sites on each elementary triangle as
in Fig. 2.9. The use of the face Boltzmann factor enables us to deal with models
with three-body interactions on the elementary triangle as shown below.

We omit the subscript expressing the coupling constant K below because of the
absence of confusion. Use of the face Boltzmann factor permits us to write the
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partition function for the triangular lattice as,

Zrr[A] = [T A1 — ¢2, 62 — b3, 83 — 61), (2.58)
{oi} &

where the symbol A denotes that the product runs over the N, up-pointing triangles
as in Fig. 2.9. The number of sites Ny is equal to the up-pointing triangles as found
in Fig. 2.9. We consider the duality to the face Boltzmann factor, by introducing
new variables {¢;;} and Kronecker’s delta for each triangle,

Zmr|A]l = ¢ Z HA P12, D3y $31)0(d12 + Paz + da1) H5 (Z ¢Z]> ,  (2.59)

{¢ij} A iJ

where the symbol 57 expresses that the product runs over the down-pointing trian-
gles, and the 7 under the summation means the summation over the bonds on each
down-pointing triangle. Similarly to the simple case, we rewrite the Kronecker’s
delta into the exponential form as, using variables k; for the up-pointing triangles
and n; for the down-pointing triangles,

1 n
Zrr[Al = ¢ (6) Z Z Z HA P12, P23, P31)€’ Hkn) Jorst(hatngotkatni)gizd

{k:} {ni} {95} @
(2.60)

where Np is the number of the plaquettes, which equals to 2N,;. The sets of the
variables {k;} and {n;} represent the site variables on the dual hexagonal lattice
as in Fig. 2.9. Hence we can regard this partition function as another partition
function defined on the dual hexagonal lattice. The summation over n; gives a
direct relationship between the two partition functions defined on the triangular
lattice,

1\ "7 .
Ztr|A] = qlJFND/2 (—) Z Z HA(¢12’ b3, h31)e’ @ (k1¢23+k2¢31+k3¢12)5(¢12 + a3 + B31).

U tiony i

(2.61)

This summation is called the star-triangle transformation. Therefore we obtain
another partition function on the Ny down-pointing triangles. We here define the
dual face Boltzmann factor as, by including the factor ¢~ which corresponds to,
g~ Np/2 a part of the overall factors,

A" (kyg, kos, k31) = Z A(pr2, P23, Pa1)e g (k1925 thadsi thsdr) 5 §(p12 + P23 + P31),
{¢ij}
(2.62)
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or equivalently, using the exponential form of the Kronecker’s delta,

A (kiz, ko k) = @72 Ao, g, da el s F1203HRstrthunda), (2.63)
{#:}

where k;; = k; — k;. Then we can establish a direct relationship between the two
models defined on the triangular lattice without recourse to the hexagonal lattice
as,

ZTR[A] = qZD,TR[A*]; (264)

where Zp g is the partition function with the dual face Boltzmann factor defined on
the down-pointing triangle as in Fig. 2.9. Similarly to the case of the square lattice,
the extra coefficient ¢ and the difference of the boundary conditions are negligible,
if we consider the thermodynamic limit. We thus use the following relation in
applications of the duality below,

Zrr[A] = Zr[A"]. (2.65)

If we use again the representation of the edge Boltzmann factors x and z*, from Eq.
(2.62) and the exponential form of the Kronecker’s delta,

A (K12, ko3, ka1) = CI*ZZZ (¢12)7(a3) (¢31) {(k1—ni) a3+ (k2—ni)pa1+(ka—ni)d12}
{¢z} ni=

q—1
1

= q 2 Z :U*(kl — nz)x*(kg - TLZ)ZU*(ks, - ni); (2'66)

n;=0

where the summation over n; means the star-triangle transformation. We obtain
the same duality relation as Eq. (2.56) by inserting this expression into the duality
relation (2.64).

2.4.3 Ising Model

The face Boltzmann factor for the non-random Ising model is given by Eq. (2.57).
On the other hand, the dual face Boltzmann factor is computed by Eq. (2.63) as

1
A (kz, kay, k) = 5 (e3K +e") " cos ﬂkij) : (2.67)
A

where the up-pointing triangle means the summation over bonds 12, 23, and 31
surrounding each up-pointing triangle as in Fig. 2.9. We can rewrite the duality
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relation (2.65) by extracting the principal Boltzmann factors Ay and Aj for up-
pointing triangles, in which spins are all up, as
Ak ] o

N, Al

oK) 21 [

where zrg is the normalized partition function by the principal Boltzmann factor.
These normalized partition functions have only the following difference in their ar-
guments,

—4K AK(Oalal) _ AK(laOal) _ AK(LLO)

e A(K)  — A(K)  Ay(K) 209
1 — o—4K AR (0,1,1)  AR(1,0,1)  A%(1,1,0) 270
L+3e 18— ANK)  Ap(K)  AN(K) .

If we consider all configurations for three edges of the elementary triangle, there
are only these face Boltzmann factors except for the principal Boltzmann factors.
Therefore we find the duality relation of the coupling constants,

—_4AK* - 1 - 6_4K

— m. (2.71)

Using this dual coupling, we construct the relation between two Ising models on the
triangular lattice with different couplings as
Ap(K)
Ag(K*)

ZrnlAr] = { }NS Zrn[Ar-]. (2.72)

The extra coefficient A is explicitly given as,

A {%}N - G)Ns (¥ 4307 ) T (K- ) (273)

Similarly to the case of the Ising model on the square lattice, we obtain the critical
point T, = 3.64096, from the fixed point e *%c = 1/3 of Eq. (2.71) by setting
K = K* = K.. The extra coefficient A given in Eq. (2.73) also becomes unity at
the critical point. We can predict that the internal energy of the Ising model on the
triangular lattice is E(K,.) = —4N, given by Eq. (2.14) and the specific heat will be
continuous or divergent through the critical point as evaluated by Eq. (2.16).

2.4.4 Potts Model with Two- and Three-Body Interactions

We apply the duality and the star-triangle transformation to the general case rather
than the Potts model only with two-body interactions, namely the Potts model with
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two- and three-body interactions [96]. We show the results for the exact value of
the internal energy of this model below. The Potts model with two- and three-body
interactions is defined by the following face Boltzmann factor,

AKQ,K3(¢12, $23, ¢31) = exXp {K2 Z 5(¢ij) + K3 H 5(¢ij)} ) (2-74)
A A

where the up-pointing triangle expresses that the summation and product run over
bonds 12, 23, and 31 surrounding each up-pointing triangle as in Fig. 2.9. It is
convenient to rewrite this Boltzmann factor in the following traditional form by
using an identity e °®) =1 4+ v§(z),

Aky i3 (P12, G23, 031) = 1+ 1wy 26(¢ij) + {305 + v] + (1 + v2)’v3} H5(¢ij)
A A
A A

where v; = ei — 1 for i =2 and 3 and y = e®*+3K2 _ 3eX2 1 2 Then the dual face
Boltzmann factor is obtained by computing Eq. (2.63) as follows,

A}2,K3(k12, kos, k31) = % {1 + v Z(S(d)z]) +y* H(S(d)z])}
A A

= % Ak iz (Fi2, kos, k31), (2.76)

where v* = qu/y and y* = ¢*/y. Therefore we can establish the relation between
two Potts models with two- and three-body interactions with different couplings as,

N,
Zrr[AKs k] = (%) Z1r[AK; i3] (2.77)

The partition function of the unfamiliar model, the Potts model with two- and three-
body interactions, has two arguments as the function of couplings. Setting Ky = K
and K3 = K3, we obtain the line of the fixed points described by y = ¢. Indeed this
line gives a part of the critical points as shown by Wu and Zia. They argued that
the line y = ¢ represents the critical surface if J3 + 3J5 > 0 and J3 + 2.J, > 0 [97].
We can take the logarithmic derivative of the free energy by Ky and K3. These
logarithmic derivatives yield two relations concerning the internal energy as follows,

(1 — gfé) <2A: 5(¢z‘j)> - g_[[({'i‘ <1;[ 5(¢z‘j)> = %aa—é (2.78)
S (o) (-5 (o) - S em
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Ky K3 T energy
0.375530 0.347552 0.925497 —3.19412
0.291622 0.737724  2.52973 —3.95336

—0.062177 1.75913 —28.2924 —15.5884
—1.09861  4.39445 —4 —0.5

e W N

Table 2.1: Solutions of eq. (2.82) and y = ¢q. Here 7 = K3/ K>.

where <EA 5(d)ij)> is the logarithmic derivative of the free energy by K, and

<HA 6(¢Z~j)> is by Kj. It turns out that these two equations are not indepen-

dent of each other. However we can give the exact value of the internal energy in
a restricted subspace of (K3, K3). We define the internal energy as, for the Potts
model with two- and three-body interactions, regarding the inverse temperature as
K27

E(K,, K3) = <H5 ¢l]> 2<H5(¢ij)>. (2.80)

Therefore we can obtain the exact value of the internal energy by relating the ratio
of two and three-body interactions with the ratios of the coefficients of <ZA 5(¢ij)>

and <HA 6(¢ij)> in Egs. (2.78) and (2.78). The condition for calculating the exact
value of the internal energy is

0K;
K3 o aKQ
E — 71 - KT (2.81)
0K,
This condition is reduced to
(K3 + 3K,)(3e52 + ¢ — 2)(ef? — 1) = Kyef2(3e52 + 2¢ — 3). (2.82)

There are solutions of this equation for the case with the state number ¢ = 2, 3, 4,
and ¢ > 69. However the Potts model has a possibility of a first-order transition for
q > 5 [95]. We therefore list the solutions only for ¢ = 2, 3, and 4 and values of the
internal energy for their cases from Eqs. (2.78) and (2.79) in Table 2.1.

We performed Monte-Carlo simulations as confirmations with linear system size
100 and 10500 MCS per spin for most cases. The results show the validity of the
duality for the partition function with two coupling constants as in the present
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Figure 2.10: The internal energies at the fixed points of duality as in Table 2.1 except
for ¢ = 4, 7 = —4 and their numerical verifications by the Monte-Carlo simulation. The
symbol ‘inc’ expresses the internal energy measured by increasing the temperature, ‘dec’
stands for the results by decreasing temperature, and ‘dual’ is for our results by the duality
and the star-triangle transformation.

case as in Fig. 2.10. The data have been averaged over 100 independent runs.
The case with ¢ = 4 and 7 = K3/K,; = —4 is an exception, in which we took
250 independent runs of 4500 MCS. This case shows the hysteresis behavior of the
first-order transition as in Fig. 2.11.

It is possible to understand the condition (2.81) for the internal energy to be
calculable from a little different point of view. We plot 7 = K3/K5 and the dual
" = K} /Kj as functions of K, in Fig. 2.12. As seen there, the two lines have the
same slope (i.e. both are flat) at the fixed point y = ¢. This feature dK3/dK;
dK3/dK, can be shown by a direct manipulation of the condition for calculation of
the internal energy (2.81).
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Figure 2.11: The internal energy at the fixed points of duality for ¢ = 4, 7 = —4, which
shows a characteristic hysteresis behavior, which is observed in the first-order transition.
The symbols are similarly to ones used in Fig. 2.10.
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Figure 2.12: The behaviors around the solutions of Eq. (2.81). The horizontal solid line
is the ratio K3/Kj for the original model and the dashed line is for the dual one K3/K;.

These two lines intersect at the fixed point (y = ¢) shown in black dot.



Chapter 3

Analytic Properties of Random
Spin Systems

In this chapter, we first review analytical properties of the random-bond Ising model
in finite dimensional systems. The random-bond Ising model is a standard model
to study the spin glass, and has quite a useful symmetry, the gauge symmetry,
to facilitate to obtain analytical results such as the internal energy and the upper
bound for the specific heat without any approximations. After then, we consider
the duality for the random-bond Ising model. It is difficult to directly apply the
duality transformation to the random-bond Ising model, because of the existence
of antiferromagnetic interactions. Therefore we employ one of the useful techniques
to analyze the random spin systems, the replica method, to map the random spin
systems into effective non-random models but with multi-spin interactions. As a
result, the replica method enables us to apply the duality to random-bond Ising
model. However we then find some problems to derive the critical points by the
ordinary procedure as introduced in the previous chapter.

3.1 Random Bond Ising Model

The random-bond Ising model is defined by randomizing the value of the coupling
constant on each bond of the non-random Ising model as,

H=-Y J;S:S;. (3.1)
(i)

where S; denotes Ising spin variable taking £1 on each site 7, and J;; expresses the
random coupling constant. This random coupling constant .J;; changes slower than
the motion of flipping of spins by thermal fluctuation. This type of randomness

ol
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is called “quenched” randomness. This model is one of the theoretical models for
analysis of spin-glass behavior.

This spin-glass behavior is caused by the geometrical effect. Here we use the
characteristic quantity defined as [11, 12],

f(C) = H Tijs (3.2)
(ij)eC

where 7;; expresses the sign of the random coupling and C' denotes that the product
is restricted over circumference of an elementary plaquette. When this quantity be-
comes negative, the spin configuration on the plaquette is under frustration, which
affects remarkably the spin-glass behavior. If we consider a quenched random sys-
tem with a number of the plaquettes, the degeneracy of the ground states increase
enormously and spins do not always order in the same direction in space in the
low-temperature region. This disorder effect is caused by the geometric property of
quenched random couplings in space. On the other hand, investigating motion of
spins for a long time, we find a particular behavior as frozen in time. This is the
spin-glass behavior and such a phase is called the spin glass phase.

3.1.1 Configurational Average

In this thesis, we consider mainly two types of the distribution functions for the
random coupling J;; of the random-bond Ising model. One is the £J Ising model
with

where p denotes the probability of the ferromagnetic coupling .J on each bond. This
distribution function is rewritten as, for convenience,
eBpJij

P(Jig) = 2cosh 3,J’ (34)

where e=2%7 = (1—p)/p. The other is the Gaussian Ising model with the distribution
function

1
V2 J?

Here J represents the average and .J? is the variance of the Gaussian distribution.
For convenience, we write this distribution function as follows, setting J =1,

Py = e {0, - (35)

1 1
P(Jy) = Ton exp {—5(,]3]- +J3) + JOJij} . (3.6)
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The physical quantity in the equilibrium state is not only given by the thermal
average as in the case of the non-random Ising model, owing to the existence of
quenched random couplings following various distribution functions as introduced
above. We need to evaluate the configurational average by J;;. The double averages,
thermal and configurational averages, make it difficult for us to directly analyze
the random-bond Ising model. The thermal average is treated by the calculation
of the free energy for each distribution of J;;. After then, we have to evaluate the
configurational average of the free energy by J;; through the logarithmic dependence,
recalling the free energy is given by the logarithm of the partition function. This
calculation has not been exactly calculated as in the case of the non-random Ising
model yet.

3.1.2 Replica Method

One of the useful techniques for the analysis of the random-bond Ising model with the
configurational average is the replica method. Using the identity lim,,_,o(z"—1)/n =
log x, we consider a relation

(2w =1 (3.7)

Instead of calculation of the logarithmic quantity for the evaluation of the free energy,
we attempt to calculate the partition function to the power of n. If we assume that n
is an integer, Z™ represents the partition function for a multiple spin system, which
has different n-copied spins {S#} (« = 1,2,---,n) and shares quenched random
couplings {J;;} as,

=) H exp { BT Z sasa} (3.8)

{57} (i)

The sketch of the replica method is given in Fig. 3.1. We find the n-replicated
partition function of the random-bond Ising model after the configurational average
generally expressed as

2 = Y]] [/ d.J;; P(J;;) exp {ww Zsasa}] (3.9)

{57} (i)

For example, we can write down explicitly the n-replicated partition function for
the case of the +J Ising model after the configurational average as,

(70 = (@) Z Hcosh {ﬁpJ + BJZ SO‘SO‘} (3.10)

{57} (@4)
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9l

Figure 3.1: Sketch of the replicated system. The dashed lines are antiferromagnetic
interactions and the solid lines are ferromagnetic ones for the £.J Ising model.

As seen in this equation, the replica method makes it possible to map a random
spin system into an effective non-random system by evaluating the configurational
average for the Boltzmann factor in advance. The effective edge Boltzmann factor
is then given as,

xn({Sf‘}) = /sz]P(JZ]) exp {5(]” ZSZ&SJQ} . (3].].)
a=1
The replica method has been a greatly successful tool in the application of the
mean-field theory to random spin systems, namely the Sherrington-Kirkpatrick
model [14], though the n-replicated partition function of the finite dimensional
random-bond Ising model has not been exactly evaluated yet. Analysis of the
Sherrington-Kirkpatrick model by the replica method has shown the existence of
the spin glass phase. We remark that whether the spin-glass phase exists even in a
finite-dimensional system has not been shown rigorously.
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3.1.3 Gauge Transformation

The Hamiltonian of the random-bond Ising model has a special symmetry known
as the gauge symmetry. We define a local transformation as follows,

Jij — JijUin (312)

where o; takes either —1 or +1. Therefore 0?2 = 1. We can easily find that the

i

Hamiltonian is (3.1) invariant for this gauge transformation as follows,
HG = — Z Ji]‘O'Z'O'jSiO'Z'SjO'j = H, (314)
(i)

where the subscript GG denotes that the Hamiltonian is changed by the gauge trans-
formation. On the other hand, the distribution function for .J;; is not generally
conserved as shown below.

+.J Ising model

The distribution function of the +.J Ising model in Eq. (3.4) is changed into, after
the gauge transformation,

Pl efplijoio;

f) 3.15
o (/i) 2 cosh 3, J ( )
Gaussian Ising model
We apply the gauge transformation to the distribution function and obtain

1 1,5 9
PG’(Jij) = \/—2_7r exp —5 (JZ] + ']0) + JgJijO'iO'j . (316)

Both distribution functions have similar forms to the edge Boltzmann factor of
the random-bond Ising model exp (5.J;;5;S;) with only difference of its argument
as 3 — B, for the £J Ising model or 8 — J, for the Gaussian Ising model. This
feature is an advantage in the following analysis of the random-bond Ising model.

In addition, the gauge transformation leaves the distribution of frustration in-
variant. The quantity defined in Eq. (3.2) is transformed as

fg(C) — H Tij0i0; = f(C) (317)

(ij)eC
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Each gauge variable o; appears twice over bonds surrounding each plaquette. There-
fore the distribution of frustration is not changed by the gauge transformation, be-
cause of o7 = 1.

We consider to evaluate the configurational average and thermal average of a
gauge invariant quantity, written as @, like the Hamiltonian (3.1) as,

/HP Jij)d ”Z ZQHeﬁJUSS (3.18)

{S Yo @)

Here we consider the gauge transformation. The distribution function P(.J;;) changes
as in Egs. (3.15) and (3.16), while @ is invariant. The gauge transformation just
changes the order of the sums over {.J;;} for the £.J Ising model and the sums over
only the signs of {J;;} in integration over {J;;} for the Gaussian Ising model. For
example, the summation over .J;; = £1 in the order ‘first +1 and then —1’ is changed
into the order ‘first —1 and then +1’ by the gauge transformation .J;; — J;;0,0; when
o;0; = —1. Therefore the gauge transformations by any configurations {o;} do not
change the value of [(Q)],,. We here consider the summation over all configurations
of the gauge variables {o;}, which gives 2+ [(Q)],, where N, denotes the number of
sites. We can thus evaluate [(Q)],, for the £.J Ising model as follows,

1
(D] = N:(2 cosh 3,J)Ne
X Z Z H B tijoio; Zl Z 0 H oB7i; 8iS;
{75} {1} (i) B &
= L Z(5y) 8755155
~ 2N+(2cosh B,J)Ns {g: (Bp %Ql;[e (3.19)

where Npg stands for the number of bonds, and similarly for the Gaussian model,

Ja / HI )Ty J° ZQHeW 555, (3.20)
(i5)

{5}

where we restrict J;; to the positive range of the integration over J;; and I(J;;) is
given by,

1 1
) = = e {_5 (72 + Jg)} | (3.21)
3.1.4 Exact Solution for the Internal Energy

Using the gauge transformation, we can rewrite the product of the distribution
function over all bonds as the partition function of the random-bond Ising model
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as in Eqgs. (3.19) and (3.20). If we set 8 = 3, in the £+.J Ising model and 5 = J,
in the Gaussian Ising model, both of the ratios Z(3)/Z(B,) and Z(B3)/Z(Jy) of
two partition functions become unity in Egs. (3.19) and (3.20). Therefore we can
calculate the exact value of the internal energy under these conditions. For the case
of the +J Ising model, the internal energy is reduced to,

[(H)],, = o (2c0sh5p NBZZ =S guSS; | T et
(ig)

{43 }{S} (7)

- 2Ns(2c0sh5 J)Ne dﬁp Z Z HeﬁpJ 5

{Si} {35} (i)
= —NpgJtanhp,J. (3.22)

The internal energy of the Gaussian Ising model is also rewritten as,

[<H>]av = 2Ns /H[ Z] Z] dJ ZQJOJWSS
{si}

The above calculations hold for any lattices. The specialty of each lattice is reflected
only in the number of bonds Np.

The conditions, 8 = 3, for the £.J Ising model and 5 = .J; for the Gaussian Ising
model, describe a particular line in the (p,T') plane for +.J Ising model and in the
(Jo, T) plane for the Gaussian model. In other words, we find a special subspace on
the phase diagram. The special line on the phase diagram is called the Nishimori
line. Under the Nishimori-line condition, we find a way to rigorously evaluate several
properties as well as the exact internal energy as shown below.

3.1.5 Upper Bound for the Specific Heat

Under the Nishimori-line condition, a cancellation of two factors expressed by the
partition functions with different couplings occurs as in Egs. (3.19) and (3.20).
Therefore we can calculate the exact internal energy. In addition, we can evaluate
the upper bound for the specific heat similarly to the case of the internal energy.
The specific heat is given as,

S 5,
T"°c = _% [<H>]a,v
= [(H*) - (H)?], . (3.24)

Here we set the Boltzmann constant kg = 1. The first term of the last expression can
be calculated as, similarly to the previous case with a cancellation of two partition
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functions,

2
[<H2>]av 9N (QCoshﬁp J)N5 ZZ ZJWSS (lleﬁp‘]ifsisf
ij

{Ji} {Si} (7)

oM (QCoshB J)Ne dﬁQZZHeﬁpJ s

P {Si} {Ji5} Gid)
- J? <N§, tanh 3,J + Np

1
T BpJ> : (3.25)

The second term in the second line of Eq. (3.24) has a denominator expressed by a
remaining partition function even after use of the cancellation under the Nishimori-
line condition. Therefore we cannot calculate this term exactly but can establish its
lower bound by the Schwarz inequality as follows,

[(H)?],, > [(H)]2, = NpJ® tanh® 3,J. (3.26)

By bringing Eqs. (3.25) and (3.26) together, we obtain the upper bound for the
specific heat as,

1

T°C < NgJ*————
cosh” 3,J

(3.27)

Similarly the upper bound on the specific heat for the Gaussian Ising model can be
evaluated as,

T?C < NgJ. (3.28)

3.1.6 Frustration Entropy

Using the gauge transformation, we find another expression of the free energy. The
free energy of the random-bond Ising model is written as follows,

Pl = [ TL PG 108 2(5. 1)) (3.29
(i)

Applying the gauge transformation, we take the summation over all configurations
of the gauge variables {o;} and obtain another expression, explicitly for the 4. Ising
model,

1
2N: (2 cosh B,J) Vs {;}Z Bps {Ji})1og Z(8,{Jij}), (3.30)

_B [F]av =
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and for the Gaussian Ising model,

o
51 = g [ [0 200 (g 26, 005D B3
* )

Each case shows that the free energy under the condition 8, = 8 or Jy, = 8 has
reduced to the entropy S(z) = — > xlogx. In addition the gauge transformation
leaves the distribution of frustration invariant as in Eq. (3.17). Therefore we find
that the free energy under the Nishimori-line condition gives the sum of the prob-
abilities for various bond configurations with the same distribution of frustration.
Seeing alternative expressions (3.30) and (3.31) of the free energy, we regard the
free energy as the entropy of the distribution of frustration. The phase transition
is caused by the singularity of the free energy. Therefore we can consider that the
singularity of the distribution of frustration gives the location of the critical point on
the Nishimori line. Frustration is a geometrical property of the random-bond Ising
model. A phase transition in the ground state, where there are only geometrical
effects without any thermal fluctuation, is expected to occur similarly by the geo-
metrical singularity of frustration. We thus expect the existence of a phase boundary
parallel to the T-axis on the phase diagram under the Nishimori line or equivalently
a vertical phase boundary to p-axis for the +.J Ising model, and to Jy-axis for the
Gaussian model. This is the vertical scenario as in Fig. 1.6. This expectation has
not been rigorously proved yet but confirmed by the mean-field theory [14]. In ad-
dition, the method with the gauge transformation has succeeded in restricting two
possibilities of the phase boundary under the Nishimori line for finite-dimensional
systems by an inequality for the correlation functions,

(SiSNI < [[{oio) e | - (3.32)

The phase boundary should be either vertical to p and .Jy-axes or reentrant toward
the ferromagnetic phase under the Nishimori line as in Fig. 1.6 [34].

3.2 Duality for Random Spin Systems

Let us consider the application of the duality to the partition function for the
random-bond Ising model. The random-bond Ising model has quenched random
couplings. In particular, the antiferromagnetic interaction such as .J;; = —.J pre-
vents the duality from constructing a relationship between the original system and
another system. If we consider the duality similarly to the non-random Ising model,
the duality relation for the antiferromagnetic interaction produces an imaginary
interaction. We explicitly write this situation as

e2K" = _tanh K, (3.33)
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where K’ is the dual coupling for the antiferromagnetic interactions and has a com-
plex value. Therefore we employ the replica method to map the random-bond Ising
model into an effective non-random Ising model with multi-spin interactions. The
configurational-averaged edge Boltzmann factor of the replicated random-bond Ising
model in Eq. (3.11) is now rewritten as,

ra({63)) = / dJi]-P(Jij)exp{BJichos (mg;.)}, (3.34)

where ¢f = ¢f' — ¢F and T¢f" expresses the angle of the spin on each site with the
replica index a. The replica method gives a new point of view to consider random
spin systems as another model with n-copied systems sharing common interactions
as in Fig. 3.1. The present expression as in Eq. (3.34) permits us to regard the edge
Boltzmann factor as a function of the differences ¢f;. Therefore the dual Boltzmann
factor of the replicated random-bond Ising model is given by, similarly to the non-
random case as in Eq. (2.23),

e = () S mrnes (03 koo ). (33)
V2

{of}

It is straightforward to extend this relation for its application to g-component spin
models with randomness like the Potts model,

k) = (L) S wten e (1Y k2ot ). (330)
V4 q

{o5}

The random-bond Ising model is the special case of ¢ = 2. We can establish the dual-
ity relation for the partition function of the random spin system with ¢ components,
whose derivation is similar to the non-random case (2.34), as

Zalta] = ¢V 2, 2] (3.37)

For the square lattice, this duality relation is reduced to, by Np = 2N, and the
thermodynamic limit,

Zply) = Zn[x). (3.38)

We can construct the duality relation for the replicated spin systems defined on

the triangular lattice. Then we use the face Boltzmann factor for convenience. For
the case of the random-bond Ising model, the face Boltzmann factor is given by,
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after the configurational average for the replicated edge Boltzmann factors as in Eq.
(3.34),

An({072, 053, 9511) = 2 ({915}) 20 ({ D53 1) ({051 })- (3.39)

Similarly to the case without randomness, we need the star-triangle transformation
to establish a direct relationship between two models with randomness defined on
the triangular lattice as well as the duality. We obtain a relationship between the
replicated face Boltzmann factors as, similarly to Eq. (2.63),

* o o o 1 @ @ «a j2r yon To05 +kS5 0T +kS
An({kIZ? k23, k31 ) = an Z An({¢12; ¢23, ¢31})e q Za:l(k12¢3 +k3567 +/€31¢2). (340)
{o5}
For the random-bond Ising model, this dual face Boltzmann factor is reduced to,
* (6] « « —ln * o (6] * (6] o * o «
A ({kTy, ko3, k51 }) = 272 Z xy, ({k7 — ni Pag, ({k3 — ni P, ({k5 — ni'}). (3.41)
{n?}

Similarly to the square lattice, we can obtain the duality relation for the partition
function as,

ZTR,n[An] — ZTR,n[A:]- (342)

3.2.1 Relationship between Replicated Models

We discuss the relationship between two partition functions related with the duality
in random spin systems. We consider the case of the square lattice. The duality
relation is given as in Eq. (3.38) As in the case of the non-random Ising model, we
consider the normalization by the principal Boltzmann factors as,

NCES B_ﬂ = 2N, [i—"] : (3.43)
0

where zy and zj, are the principal Boltzmann factors of the original and the dual
+.J Ising models, respectively. Here we use again the normalized partition function
2. The principal Boltzmann factors are given by

zy = [e"d] (3.44)

. eBJij +e—5Jij n
R "

We restrict ourselves to the case of the +J Ising model on the square lattice here
for simplicity. We give explicitly the edge Boltzmann factors for the .J Ising model
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from Eqgs. (3.34) and (3.35) as
cosh { K, + K'Y _, cosmog }

({62 4
ra({65) i (3.46)
* « _ € Ko7 KT KT «

v ({k3}) = T;msh 8 H{e +e  Tcos Tk} (3.47)
Here we use expressions in terms of the coupling constants as K, = f3,J, and

K = BJ, where e 2%» = (1 — p)/p. The quantity 7 expresses the sign of the
couplings for the +.J Ising model. We define the relative Boltzmann factor u, , =
xn(k)/z0(K,, K) for convenience for the following discussion, where z,,(k) denotes
the Boltzmann factor with £ antiparallel pairs on the n-replica layer. Both of the
original and the dual relative Boltzmann factors are explicitly written as

cosh {K, + (n — 2k)K}

nk(Kp, ) = . 3.48
tin s (K, K) cosh(K, + nK) (3.48)

tanh K, tanh* Kk € odd
tanh® K k € even’

Uy, 1, (Kp, K) (3.49)
We consider a relationship between two normalized partition functions, the original
and dual ones, and their behavior on the n-dimensional hyper plain by consideration
of change of their arguments {u, }. Following the replica method, we have to con-
sider the duality for the partition function of the n-replicated system with arbitrary
number of n. After that, we consider an extrapolation to the quenched limit n — 0.
Let us consider several cases with various replica numbers below before taking the
n — 0 limit.

3.2.2 Special Cases

We consider that the replica number is less than three. For n = 1, the normalized
partition function has a single argument similarly to the case of the non-random
Ising model. The relative Boltzmann factors for the 1-replicated +.J Ising model is
given as,

cosh (K, — K)
K, K P 3.50
w11 (Kyp, K) cosh(K, + K) (3:50)
(K, K) = tanhK,tanh K. (3.51)

Therefore we can establish the duality relation for K, and K as for the non-random
Ising model.

cosh (K; — K*)
cosh(Kp + K*)

= tanh K, tanh K. (3.52)
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Figure 3.2: The phase diagram derived from the duality for the replica number 1 and
2. The dashed line is the Nishimori line. The points on the Nishimori line express the
multicritical points for both of the cases. The bold line in the left panel expresses the
phase boundary for the replicated £J Ising model with n = 1. The bold line in the right
panel expresses the phase boundary for the replicated +J Ising model with n = 2 until
the line meets the Nishimori line. The dotted lines in the right panel express exact phase
boundaries in the region under the Nishimori line.

We derive a line from the fixed points given by setting K = K* and K, = K. This
line expresses the phase boundary for the 1-replicated +.J Ising model as in Fig.
3.2.

Let us next consider the case with n = 2. The relative Boltzmann factors of the
2-replicated £J Ising model are

cosh K
K, K) = P 3.53
21 (K, K) cosh (K, + 2K) ( )

cosh (K, — 2K)
K, K) = P . 3.54
2 (K, K) cosh (K, + 2K) (3.54)

We obtain also the dual ones,

u5 1 (Ky, K) = tanh K, tanh K (3.55)
uyo(Kp, K) = tanh® K. (3.56)
We here show the relationship between these relative Boltzmann factors described

by two lines in the two-dimensional plane (ug,us) in Fig. 3.3.  As the temper-
ature changes from 0 to oo, the point representing (us,,us2) moves toward (1,1),
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Figure 3.3: Behaviors of the relative Boltzmann factors for the 2-replicated +.J Ising
model with concentration p = 0.9 and p = 0.8. The original ones are depicted by the
solid lines and the dual ones are expressed by the dashed lines. The black points are the
intersections which are the fixed points of the duality. The thin lines denote the fixed
points of the duality for all p.

which corresponds the high-temperature limit, along the solid lines. Then the corre-
sponding dual point (u3;, uj,) moves along the dashed lines in the opposite direction
toward (0,0) as in Fig. 3.3. These behaviors are seen for any value of p. In the
case of p = 1, that is the non-random Ising model, the solid line completely coin-
cides with the dashed line as in Fig. 3.4. Therefore we can find a transformation
u(K) — ug,(K*). From this relationship, we obtain again the duality relation
e 2K = tanh K for the non-random Ising model. On the other hand, there are the
intersections of two lines as in Fig. 3.3, though we find that the solid line does
not overlap the dashed line for p < 1. These correspond to the fixed points of the
duality, which are given by uyx(K.) = u3,(K.). We plot these fixed points for
various values of p for the 2-replicated +.J Ising model as in Fig. 3.2. Indeed, the
fixed points express the critical points above the Nishimori line. However, under the
Nishimori line, the fixed points of the duality fail to give the critical points. Two
phase boundaries under the Nishimori line exist, which is known by the previously
published result [98]. Therefore the fixed points of the duality may not give the
exact location of the critical points in the region under the Nishimori line.

Through two cases with the replica number 1 and 2, it seems that the duality
can give the exact location of the critical points for the replicated +.J Ising model
in the restricted region. In addition, we give a remark that we can derive these fixed
points by a single equation zo(K,, K) = z{(K,, K) similarly to the non-random spin
models as seen previously.
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Figure 3.4: Behavior of the relative Boltzmann factors for the 2-replicated non-random
Ising model. Two lines overlap as expressed by the solid line. The thin line denotes the
fixed point of the duality.

3.2.3 General Cases

We consider the case of the 3-replicated +.J Ising model. We cannot find intersec-
tions, which are the fixed points of the duality, as found in the above cases except
for p = 1, if the replica number becomes three and beyond. The relative Boltzmann
factors are given by

cosh (K + K,,)
K, K) = b 3.57
s (K, K) cosh 3K + K,,) (3:57)
cosh (—K + K,)
K, K) = P 3.58
2Ky, K) cosh (3K + K,) (3:58)
cosh (—3K + K,)
K, K) = P .
s3(Kp, K) cosh (3K + K,) (3:59)
We obtain also the dual ones,
uz,(Kyp, K) = tanh K, tanh K (3.60)
ulo(Kp, K) = tanh®K (3.61)
ul4(Kp, K) = tanh K, tanh® K. (3.62)

We describe points corresponding to these relative Boltzmann factors on two-dimensional
planes (u31,us2) and (us,us3) as in Fig. 3.5. As seen in Fig. 3.5, we cannot ob-
tain any fixed points of the duality for the 3-replicated +.J Ising model with p # 1.
Therefore we find that the duality cannot predict the critical points as the fixed
points. Only for the case of the non-random Ising model (p = 1) as in Fig. 3.6,
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Figure 3.5: Behavior of the relative Boltzmann factors for the 3-replicated +.J Ising
model. The original ones are depicted by the solid line and dual ones are expressed by the
thick dashed line.

the solid line expressing (us,1,us 2, us3) coincides with the dashed line representing
(u3 1, U39, u33) similarly to the previous cases. The problem of the absence of the
fixed point remains for the n-replicated +.J Ising model with the replica number n
beyond three and for the Gaussian Ising model.

The duality is a very useful tool to derive the exact locations of the critical points
for non-random spin systems, but may not be applicable to random spin systems
found in this section. In particular, before considering extrapolation to the limit
n — 0, we find that the duality with the replica method does not always give the
fixed point.

In the next chapter, the conjecture on the location of the multicritical point is
introduced. For a prediction of the precise location of the multicritical point, we
consider the duality for the random-bond Ising model on the Nishimori line in the
next chapter. On this line, some advantages for the application of the duality are
found.
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Figure 3.6: Behavior of the relative Boltzmann factors for the 3-replicated non-random
Ising model. Two lines are overlap as expressed by the solid line.






Chapter 4

Conjecture on the Location of the
Multicritical Point

In the previous chapter, we discussed the possibility to determine the location of
the critical points for the +.J Ising model by the duality. Unfortunately it may
be impossible to derive a phase boundary for the random-bond Ising model by the
duality with the replica method. We again attempt to apply the duality to the
random-bond Ising model by the aid of the gauge symmetry in this chapter. We
consider the duality to derive the location of the critical point on the Nishimori
line, the multicritical point, for the random-bond Ising model. To give a prediction,
we assume some hypotheses. As seen below, it seems that the conjectures for the
square and triangular lattices are in good agreement with the existing results with
the precision to the third decimal point. Nevertheless the conjectures for the cases
on the hierarchical lattices reveal evident inconsistencies with reliable estimations,
which are by the exact renormalization group analysis on the hierarchical lattice.
We discuss the reasons why such deviations between the conjectures and the exact
results exist in this chapter.

4.1 Duality on the Nishimori Line

We start from the exact duality relation for the replicated partition functions of
the random-bond Ising model in Eq. (3.43). As shown in the previous chapter, this
relation is different from the duality relation for the non-random Ising model because
the replicated partition function is a multi-variable function of many-component
relative Boltzmann factors. Here we consider the duality relation for the replicated
+.J Ising model on the Nishimori line by setting K, = K.

We again use the relative Boltzmann factors to represent the relationship between
two normalized partition functions. When wu,; = u,2 = -+ = u,, = 1, which

69
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Figure 4.1: Behavior of the relative Boltzmann factors for the 2-replicated +.J Ising model
on the Nishimori line. Two lines describing the original and dual relative Boltzmann factors
completely coincide as expressed by the bold line.

corresponds to the high-temperature limit 7" — oo (K — 0), all spin configurations
show up with equal probability. Therefore the normalized partition function just
counts the number of all the possible spin configurations, 2"s. On the other hand,
in the low-temperature limit, which is expressed by u,; = u,2 = -+ = up, = 0,
the allowed spin configuration is the all-parallel state, for which we have set the
energy 0, since the energy is measured from all spin-parallel state by dividing each
edge Boltzmann factor by the principal Boltzmann factor zy. Considering the global
inversion degeneracy, we obtain that the partition function becomes 2. In addition,
the normalized partition function is a monotonically decreasing function of T as
shown in Ref. [99].

For the case with n = 1, we can find the duality relation for the coupling constant
as in Eq. (3.52). On the other hand, we cannot obtain such a duality relation for
n = 2 because two lines which describe changes of relative Boltzmann factors show
different behaviors. However, on the Nishimori line, two lines coincide perfectly
as in Fig. 4.1. Therefore we can establish the duality relation for the coupling K.
Indeed it is given by, from correspondence between Eqgs. (3.53) and (3.55) by setting
K =K,,

cosh K*

—  _ —tanh’K. 4.1
cosh 3K* an (4.1)

This equation is also obtained from Eqs. (3.54) and (3.56). We can thus obtain the
multicritical point as the fixed point of the duality. The fixed point is also derived
here from a single equation by the principal Boltzmann factors, similarly to the
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Figure 4.2: Behavior of the relative Boltzmann factors for the 3-replicated +.J Ising
model on the Nishimori line. The solid line expresses the trajectory of the original relative
Boltzmann factor and the dashed line denotes that of the dual one. Each dot expresses
the solution of Eq. (4.2).

non-random spin systems,

where, from Eqgs. (3.44) and (3.45)
cosh (K, + 2K)
K, K) = P 4.3
zo(Ky, K) cosh K, (43)
25(K,, K) = 2cosh® K. (4.4)

These are explicit expressions for the £.J Ising model of Egs. (3.44) and (3.45). We
thus expect that the duality with the replica method is capable to derive only the
exact location of the multicritical point for any number of n by the aid of the gauge
symmetry as a special feature on the Nishimori line. Equation (4.2) then gives the
location of the multicritical point.

Naturally one attempts to consider the case for the replicated +.J Ising model
with n = 3. We show the behavior of the relative Boltzmann factors along the
Nishimori line in Fig. 4.2. Unfortunately we find that two lines do not coincide in
this case.

Whereas we cannot find the duality relation for the coupling even on the Nishi-
mori line because of the absence of coincidence of two lines, the numerical estimation
showed the multicritical point was at the given point by Eq. (4.2) within error bars
[88]. Maillard, Nemoto, and Nishimori have then assumed that Eq. (4.2) gives the
location of the multicritical point of the +.J Ising model. This is the conjecture to
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Figure 4.3: Behavior of the relative Boltzmann factors for the 3-replicated Gaussian
Ising model on the Nishimori line. The solid line expresses change of the original relative
Boltzmann factor and the dashed line denotes that of the dual one. Each dot expresses
the solution of Eq. (4.2).

derive the location of the multicritical point of the +.J Ising model. As shown in
Fig. 4.2, we remark that the solution of Eq. (4.2) is not give the fixed point of the
duality. If we consider the principal Boltzmann factors similarly, we can construct
the conjecture for other random-bond Ising models. One finds again that two lines of
the original and dual relative Boltzmann factors do not overlap, if one considers the
replicated system for the Gaussian Ising model with n = 3. Therefore the solution
of Eq. (4.2) for the Gaussian Ising model is also not the fixed point of the duality.
However we here have to point out a significant fact that the distance between the
two points representing the solution of Eq. (4.2) is smaller than that for the +.J
Ising model shown as in Fig. 4.3.

We here show the derivation of the conjecture of the quenched limit (n — 0) for
the case of the random bond Ising model with the general distribution function of
Jij. We assume that the conjecture holds valid in the quenched limit of n — 0 of
a single equation zy = z similarly to Eq. (4.2), using definitions of the principal
Boltzmann factors (3.44) and (3.45),

We evaluate the leading term of the replica number n in this equation as,

1+n[BJyl],, =1— glog2 +n [log (e + e777ii)] (4.6)

av
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From this equation, we obtain an equation for the multicritical point of the random-
bond Ising model on self-dual lattices as,

[log (1+ 6726‘]“)]&W = %log 2. (4.7)

We will estimate the location of the multicritical point for several random-bond
Ising models in the next section.

For the mutually dual-pair lattices as the triangular and the hexagonal lattices,
we can establish the relation between locations of the multicritical points for the
mutual pair. We consider the product of two partition functions with different
couplings as Z,[x(51)]Zp [z (F2)]. Here we use Z, for the partition function defined
on the original lattice and Zp,, is the one on the dual lattice. We apply the duality
to this product of the partition functions and obtain the relation [100],

Znlx(B1)1Zpn[(B2)] = Zpnlz" (B1)] 2027 (52)]- (4.8)

We obtain a relation between the locations of the multicritical points on the mutually
dual pair of lattices,

2o (B1)70(B2) = x5(81) x5 (Be), (4.9)

where [3; expresses the inverse temperature corresponding to the location of the
multicritical point for each system. This relation yields, by taking the leading term
of n, similarly to the case of the self-dual lattice,

2
> [log (1 +e 2%5)] =log?2. (4.10)
k=1

4.2 Multicritical Point

In this section, we show all the results obtained by the conjecture (4.7) and (4.10).

4.2.1 Random-Bond Ising Model on the Square Lattice

We can rewrite Eq. (4.7) for the +J Ising model in terms of the probability p for
Jij =J as,

1
—plogyp — (1 —p)logy(1 —p) = 5. (4.11)
The left-hand side of this equation is the binary entropy defined as H(p). Equation
(4.11) gives p. = 0.889972 as the prediction for the location of the multicritical point
[87, 88].
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Type Conjecture Numerical result

SQ +J pe = 0.889972 [87, 88]  0.8905(5) [56]
0.8906(2) [57]
0.8907(2) [58]
0.8900(5) [59]
0.8894(9) [60]
0.8907(4) [61]
0.89081(7) [62]

SQ Gaussian Jo =1.021770 [87, 88] 1.02098(4) [61]

TR +J pe = 0.835806 [101] 0.8355(5) [59]

TR Gaussian Jo = 0.798174 —

HEX +J pe = 0.932704 [101] 0.9325(5) [59]

HEX Gaussian Jo = 1.270615 —
SQ Potts(¢ =3) p.=0.079731 [87, 88] 0.079-0.080 [102]

Table 4.1: Comparisons between the conjecture and the existing numerical results. SQ
denotes the square lattice. TR expresses the triangular lattice and HEX is the hexagonal
lattice.

For the Gaussian Ising model, we cannot obtain an appealing expression as
the case for the +.J Ising model. However we can estimate the location of the
multicritical point by the numerical estimation of the following equation.

o0 1
/ P(J;j) logy (14 e7*07) = 2, (4.12)

where P(J;;) is the distribution function of the Gaussian Ising model defined in Eq.
(3.5). The left-hand side of this equation is expressed below as G(.Jp). The solution
of G(Jy) = 1/2 gives Jy = 1.021770 [87, 88]. The above conjectures for the £.J Ising
model and the Gaussian model are compared with other results by various numerical
approaches in Table 4.1. They are in good agreement to the third digit for the +.J
Ising model and to the second digit for the Gaussian model with the existing results
as in Table 4.1.

4.2.2 Potts Spin Glass on the Square Lattice

The conjecture is applicable to the Potts spin glass defined by the Hamiltonian,

H=—J) (¢ +1y), (4.13)
(ig)
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where ¢;; = ¢; — ¢; expresses the difference between adjacent Potts spins taking an
integer value between 0 and ¢ — 1. The quantity /;; is the random variable following
the distribution function given as

— 1 - (q - 1)p (lZ] = 0) . eKP‘;(lij)
P(li;) = { » (s 0) } — T (4.14)

where e» = {1—(¢—1)p}/p. The Potts spin glass has the gauge symmetry similarly
to the random-bond Ising model. For the Potts spin variables and random variables,
we define the gauge transformation as,

lij — lij — (Si — Sj). (416)

Here s; is an integer between 0 and ¢ — 1. Therefore we can establish the Nishimori
line by setting fJ = K, where the internal energy can be calculated exactly and
the specific heat can be bounded as in the case of the random-bond Ising model
[103].

We give the conjecture for the location of the multicritical point from Eq. (4.2),
similarly to the case (4.11) of the random-bond Ising model [87, 88|.

{1~ (g~ Dp}log {1~ (g~ 1)p} ~ (4 — plogp = 5 loga. (4.17)

The solutions are obtained as p. = 0.079731 for ¢ = 3, p. = 0.063097 for ¢ = 4, and
pe = 0.052467 for ¢ = 5. We list the conjecture for ¢ = 3 in comparison with the
existing result for ¢ = 3 in Table 4.1. Though we show a comparison for one example
in the Potts spin glass because of absence of other results, we find the conjecture
works well to the third digit also for this model.

4.2.3 Random-Bond Ising Model on the Triangular Lattice

The triangular lattice is not a self-dual lattice. Therefore we need to use the star-
triangular transformation to construct the direct relationship between the original
triangular lattice and another triangular lattice. Then we assume that a single
equation inspired by the non-random Ising model on the triangular lattice as in Eq.
(2.73), similarly to the case for the random-bond Ising model on the square lattice
as,

These principal Boltzmann factors are for the replicated random-bond Ising model
on the triangular lattice. They are given by applications of the replica method and
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configurational average to the definition of the face Boltzmann factor and the dual
one as in Egs. (3.39) and (3.41) with the random interactions as,

Ay = [enﬁle-l-st-i-Jsl)] (419)

4 = {QZH<B+”Y>}
= [(Hcoshﬁng+H81nh5Jw>n] . (4.20)

The summation over S; corresponds to the star-triangle transformation. We attempt
to apply the procedure of the conjecture to the face principal Boltzmann factors in
Eqgs. (4.19) and (4.20). Following the replica method, we take the leading terms of
the replica number n and obtain the relation

3 3
[log {H cosh BJZO + H sinh /8']20}] - B [(Jlg + J23 + J31)]av = — IOg 2. (421)

This equation gives an equation to predict the location of the multicritical point for
the £.J Ising model on the triangular lattice as,

2p*(3 — 2p) logp + 2(1 — p)*(1 + 2p) log(1 — p) + log 2
= p(4p — 6p + 3) log(4p — 6p + 3)
+(1 = p)(4p® — 2p + 1) log(4p? — 2p +1). (4.22)

The location of the multicritical point is estimated as p. = 0.835806 [101]. This
can be related with the one on the hexagonal lattice by the relation (4.10), which is
reduced to, for the case of the £+.J Ising model,

H(prr) + H (puex) = 1, (4.23)

where prr and pggx denote the locations of the multicritical points on the triangular
and hexagonal lattices, respectively. The location of the multicritical point for the
+.J Ising model on the hexagonal lattice is predicted as p, = 0.932704 [101]. Both of
the results for the triangular and hexagonal lattices are compared with the results
prr = 0.8355(5) and pppx = 0.9325(5) investigated with the help of finite-size
scaling and conformal-invariance concepts [59]. In the case of the 4-.J Ising model on
the triangular and hexagonal lattices, the conjecture is successful, with the precision
to the third decimal point, in deriving the locations of the multicritical points as in
Table 4.1.
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We give also our predictions for the Gaussian Ising model on triangular lattice
by numerical estimations of the relation (4.21), by the triple integration over {.J;;},

as
o 3 3 3
/ [ P(Joi)d Joilog {H cosh B.J;p + [ [ sinh 5Ji0} —3J2=—log2.  (4.24)
=1 i=1 i=1

where Jy denotes the location of the multicritical point and P(.J;;) is the distribution
function defined in Eq. (3.5). The result is Jyrr = 0.79817 and this is related with
Jorex = 1.27061 the location of the Gaussian Ising model on the hexagonal lattice
by the relation (4.9). We have not found published results by other approaches for
the Gaussian Ising model on the triangular and hexagonal lattices. Therefore we
cannot conclude whether the conjecture is valid or not.

Comparing the conjecture and other results as in Table 4.1, we accept that
the conjecture can indeed derive the locations of the multicritical points with the
precision to the third digit especially for the £.J Ising model, or at least second digit
for the Gaussian Ising model, although two lines of the replicated spin systems for
the original and dual random spin systems do not coincide. Unfortunately, there
are also several cases that the conjecture does not always work well to the third
digit, differently from the above cases. We show several inconsistent cases below,
the conjecture for the hierarchical lattices.

4.2.4 Hierarchical Lattices

When we apply the renormalization group analysis to the regular lattice, we need
some approximations to iterate the procedure of the renormalization in general.
However the special structure of hierarchical lattices helps the renormalization group
analysis to give the exact result. Construction of a hierarchical lattice starts from
a single bond, and we iterate the process to substitute the single bond with a unit
cell of more complex structure as in Fig. 4.4. Because a hierarchical lattice has
such an iterative structure consisting of unit cells as shown in Figs. 4.4, we again
obtain the same structure after we trace out the degrees of freedom, as denoted by
white circles, on each unit cell in renormalization group calculations, which are the
inverse processes of the construction. Therefore the renormalization by summation
over white-colored sites in each unit cell gives another effective coupling constant by
a relation,

AeK(ﬂsisj _ Z eK(**U(si51+si52+5152+515j+525j)

{Sk}

: (4.25)

where the superscript of the coupling constant denotes the step of renormalization
and the indices of spins express sites as labeled in Fig. 4.4. This is reduced to the
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i
®

Figure 4.4: A self-dual hierarchical lattice.

following recursion relation for the coupling constant of the Ising model defined on
the hierarchical lattice as in Fig. 4.4,

2K _ 4 cosh K(r=1)

T KT D | 9o KU D | 3K (4.26)

This recursion relation yields the flow of the renormalization as in Fig. 4.5. De-
pending on the initial temperature, the coupling constant changes into two different
fixed points K = 0 and K = oo of the renormalization. These fixed points corre-
spond to paramagnetic and ferromagnetic phases. The unstable fixed point is given
as K, = 0.440687, or equivalently e 25 = /2 — 1. The critical point on the hier-
archical lattice as in Fig. 4.4 is the same as the fixed point of the duality, because
this hierarchical lattice is a self-dual lattice. As shown above, the structure of the
hierarchical lattice enables us to obtain the exact location of the critical point from
the evaluation of the simple recursion relation as in Eq. (4.26).

Even for the random spin systems, this advantage of the renormalization holds
on hierarchical lattices. Our task is to evaluate recursion relations of coupling con-
stants following the distribution function of bonds, which relates the sets of the
coupling constants {KZ.(; )} after renormalization with {Kl(; ~I} before renormaliza-
tion. The examination of statistics of resulting coupling constants enables us to
obtain another distribution depending on the initial temperature and randomness.
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Figure 4.5: Flow of the renormalization for the non-random Ising model on the hierar-

chical lattice in Fig. 4.4.
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Figure 4.6: Three mutually dual pairs of hierarchical lattices.

The renormalized coupling constants reflect the phase of the random spin system
under consideration.

Hinczewski and Berker investigated the locations of the multicritical points on
three mutually dual pairs of hierarchical lattices as in Fig. 4.6 [92]. They examined
the conjectured relation for the mutually dual pairs, which is expected to be satisfied
similarly to the case of the pair of the triangular and hexagonal lattices,

H(pa) + H(py) = 1, (4.27)

where p, and p, denote the location of the multicritical point on the hierarchical
lattices. The results were not perfectly consistent with the above relation as H(p,)+
H(py) = 1.017,0.983 and 0.991. Similarly to these confirmations, here we show
investigations of the validity of the relation (4.27) for the +.J Ising model and the
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Figure 4.7: Additional five mutually dual pairs of hierarchical lattices. Bonds denoted
by the dashed lines stay unrenormalized, whereas bonds expressed by the solid lines are

replaced by the renormalized interactions at each renormalization.

Gaussian Ising model for other five mutually dual pairs as in Fig. 4.7 [104].
stochastic calculation of the renormalization group analysis, proposed by Nobre
[105] is carried out for the derivation of the location of the multicritical points for
the mutually dual pairs. The Gaussian Ising model is expected to satisfy the similar
relation to the case for the £J Ising model

G(J,) + G(J) =1, (4.28)

where J, and J, express the average of the Gaussian distribution corresponding to
the locations of the multicritical points. The confirmations of the relation (4.27) for
the +.J Ising model and of this relation for the Gaussian Ising model are shown in
Table 4.2. We find small but non-negligible deviations in most cases. Remarkable
results are found in the cases for the Gaussian Ising model. The discrepancies from
the conjectured relation are much smaller than those for the +.J Ising model.

Verifications of the conjecture as shown above are carried out also for the self-
dual hierarchical lattices with various types of the unit cell as in Fig. 4.8 [104]. The
conjecture gives the same locations as that of the square lattice, because the conjec-
ture does not depend on particular structure of the hierarchical lattices, but on the
self duality. Nevertheless the locations of the multicritical point as shown in Table
4.3 are slightly different among each other, which reflect the individual structures
of the unit cells of the hierarchical lattices. Therefore we have to reconsider the
validity of the underlying hypothesis of the conjecture. This consideration will yield
a way to improve the conjecture to derive more precise locations of the multicritical
point as shown in the following chapters.
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Lattice Pa Pb H(pa) + H(pb) Ja Jb G(Ja) + G(Jb)
1 |0.9338(7) 0.8265(6) 1.017(4) 0.7605(5) 1.3174(9) 1.0005(8)
2 | 0.8149(6) 0.9487(7) 0.983(4) 0.7655(5) 1.3118(9)  1.0000(8)
3 ] 0.7526(5) 0.9720(7) 0.991(5) 0.5569(4) 1.6151(11) 0.9999(7)
4 ]0.8712(6) 0.9079(6) 0.998(4) 0.9704(7) 1.0730(8)  1.0009(10)
5 | 0.8700(6) 0.9081(7) 1.000(4) 0.9701(7) 1.0733(8)  1.0009(10)
6 | 0.9337(7) 0.8266(6) 1.017(4) 1.3175(9)  0.7606(5) 1.0003(8)
7 | 0.9084(6) 0.8678(6) 1.005(4) 1.1450(8)  0.9040(6)  1.0001(9)
8 |0.9065(6) 0.8686(6) 1.009(4) 1.1436(8)  0.9055(6)  1.0005(9)

Table 4.2: The locations of the multicritical points for the +.J and Gaussian Ising models
on mutually dual pairs of hierarchical lattices. The results for lattices number 1 to 3
reproduce the results by Hinczewski and Berker.

Lattice Pe 2H (p.)

b =2 SD(£J) 0.8915(6) 0.991(4)
b =3 SD(<J) 0.8903(2) 0.998(1)
b=4SD(+J) 0.8892(6) 1.005(4)
b=5SD(+J) 0.8895(6) 1.003(4)
b=6SD(+J) 0.8890(6) 1.006(4)
b=7SD(+J) 0.8891(6) 1.005(4)
b =8 SD(+J) 0.8889(6) 1.006(4)
Lattice Jo 2G(Jy)

b =3 SD(Gaussian) 1.0209(3) 1.0011(4)

Table 4.3: The locations of the multicritical points for the +.J Ising and Gaussian models
on the self-dual hierarchical lattices. Also shown are the values 2H (p.) and 2G(.Jy), which
should be unity according to the conjecture.
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Figure 4.8: Several self-dual hierarchical lattices. The number of bonds is expressed by
the scale factor b.

4.3 Phase Boundary and Historical Remarks

Before closing the present chapter, we explain some historical remarks and refer to
the possibility of derivation of the critical points, except for the multicritical point,
in random spin systems by the duality in conjunction with the replica method. The
conjecture without restriction of the Nishimori-line condition gives predictions for
the critical points. More explicitly, the following relation is the conjecture on the
phase boundary for the +.J Ising model,

wo(K,, K) = 25(K,, K). (4.29)

Considering the extrapolation of the n — 0 limit, we obtain an equation from the
leading term of the replica number n,

plog (1+e7) + (1 —p)log (1L + ™) = %log 2. (4.30)

However this equation gives quite a different phase boundary from the expected one
for the +J Ising model as in Fig. 4.9, whereas the conjectured multicritical point
is located at the lowest value of the concentration p shown rigorously by the gauge
symmetry [34]. In the limit without any randomness, the duality can give the exact
critical point that is the transition point of the non-random Ising model. Therefore
we naturally expect that the duality can also derive the phase boundary near the
critical point 7T, of the non-random Ising model, because the effect by randomness is
weak near T,.. The slope of T, for the +£.J Ising model is estimated by the conjectured
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Figure 4.9: Conjectured phase diagram for the +.J Ising model and the dilute Ising model.
The solid lines describe the conjectured phase boundaries and the dashed lines express the
slope from the critical point of the non-random Ising model derived by the perturbation
theory. For the £J Ising model, the dotted line expresses the Nishimori line, and the
vertical thin line is expected phase boundary in the low-temperature region.

relation (4.29) without restriction K = K, as,

1 dT
— —|  =341421. 4.31
T dp (4.31)

T=T.

However the perturbation theory shows that this result is inaccurate [106], because
the slope should become

1AL 590011, (4.32)
T dp T=T,

We find that the conjecture fails to derive the precise phase boundary even near T..
The conjecture was proposed before the discovery of the Nishimori line [107, 108].
When the conjecture appeared, the conjecture was considered to be capable to
describe the phase boundary for the random-bond Ising model, including the diluted
Ising model defined by the distribution function,

P(Jij) = pd(Jig = J) + (1 = p)d(Ji5). (4.33)

Therefore the conjecture (4.7) yields the prediction for the phase boundary as

1
plog (1 +e77) + (1 —p)log2 = 5 log 2. (4.34)
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This equation describes the phase boundary as in Fig. 4.9. However this prediction
is also an inaccurate solution near 7,, whereas the conjecture succeeded in deriving
the exact solution for the critical point p. = 0.5 in the ground state, and the slope
around p, [107, 109, 110] as in Fig. 4.9. The slope of T, for the diluted Ising model
by the conjecture is estimated as,

1 dT
T. dp

= 1.34254. (4.35)

T=T.

On the other hand, the perturbation theory again gives the inconsistent result with
this value [110],

1 dT
— —|  =1.32926. 4.36
T (4.36)

T=T.

In the case for the Potts diluted model, it was also reported that the deviations for
the slope from the non-random spin system between the result by the conjecture
and the one by the perturbation theory as shown above [111, 112]. Therefore the
conjecture, an application of the duality with the replica method, was considered
not to be a reliable approach to precisely analyze the phase transitions in random
spin systems. The duality with the replica method was argued by Aharony and
Stephen [113]. They concluded that the duality in conjunction with the replica
method for the random spin systems might not be applicable to the random spin
systems, because the behaviors of the edge Boltzmann factors for the original and
dual replicated random spin systems did not coincide in general as our discussion in
the previous chapter.

However, for the last decade, we have found the possibility that the gauge sym-
metry on the Nishimori line enables us to predict the location of the multicritical
point in good agreement with many numerical verifications [87, 88, 99, 100, 101].
The conjecture is again studied as a theory to derive the critical points in random
spin systems. On the other hand the discrepancies have also been found in the cases
on the hierarchical lattices as seen in the previous section. These are non-negligible
problems on the conjecture. It is then necessary to reconsider the validity of the
conjecture and to investigate reasons generating the deviations between the con-
jecture and exact solutions on the hierarchical lattices. The investigation for the
phase transitions in random spin systems on hierarchical lattices has given the way
to improve the conjecture to derive more precise locations of the critical points even
for the slope of T, as well as the location of the multicritical point as shown in next
chapter.



Chapter 5

Improved Conjecture for
Hierarchical Lattices

We found the deviations between the results by the conjecture and the renormalization-
group analysis with the maximum discrepancy of 2% for the cases of the +.J Ising
model on the mutually dual pairs of the hierarchical lattices labeled by 1 and 6 in
Figs. 4.6 and 4.7 as in Table 4.2. Tt is considered that these crucial differences are
caused by the fact that two lines of the relative Boltzmann factors do not overlap
found in Chapter 3. We reconsider the duality with the replica method for the
random-bond Ising model discussed in Chapter 3 from a point of view of the renor-
malization group. On the hierarchical lattices, we can deal with the renormalization
group analysis by the evaluation of recursion relations as in Eq. (4.25). As will
be seen later, two lines expressing changes of the relative Boltzmann factors show
tendency to approach a common renormalized system after a sufficient number of
renormalization steps. This fact enables us to identify the multicritical point as the
fixed point of the duality.

5.1 Duality and Renormalization

We restrict ourselves to the n-replicated +.J Ising model defined on hierarchical lat-
tices. After the configurational average, the replicated random spin systems become
effective non-random spin systems without any randomness. For example, we con-
sider the 3-replicated £J Ising model under the Nishimori-line condition K, = K
with the following relative Boltzmann factors, from the evaluation of Eqs. (3.34)

85
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Figure 5.1: The renormalization flow of the 3-replicated +J Ising model. The bottom
plot is the points expressing the renormalized relative Boltzmann factors for both of the
original and dual systems at each renormalization step. The thick curves represent the
renormalization flows in the two panels on the top. The dashed curves express the points
of the relative Boltzmann factors. (see also Fig. 4.2.)

and (3.35),

us({62)) = cosh { K(1+ Y7 | cosmg®}) (5.1)

cosh 4K
eKT 3
U;({d)laj}) = Z m H (eKT + e_KT COS 7T¢;~lj) s (52)
T=%1 a=1

where ¢7; = ¢f — ¢F. The multicritical point for the 3-replicated +.J Ising model
defined on the square lattice is confirmed to be located at the predicted point by the
conjecture (4.2) within its error bars in Ref. [88]. Also on hierarchical lattices, such
estimations are worthwhile to be considered. We calculate numerically the location
of the multicritical point for the replicated 4. Ising model following the procedure
of the renormalization group on the hierarchical lattices in this section. For example,
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we consider the following recursion relation for the 3-replicated +.J Ising model on
one of the self-dual hierarchical lattices depicted in Fig. 4.4, similarly to the case of
the non-random Ising model as in Eq. (4.25),

Auf (o) = 3 uf 7V (0%) ud ™V (6%) ul TV (65) uf T (6%) ul TV (65 |
{0}
(5.3)

The numerical evaluation of this recursion relation for both the original and dual
relative Boltzmann factors gives us the renormalization flow described as in Fig. 5.1.

The specialty of the hierarchical lattice does not change the functional form of the
partition function by the renormalization, and permits us to describe the renormal-
ization flow in the same space (us 1, us 2, us3) expressing the change of the relative
Boltzmann factors before the renormalization. On other two-dimensional lattices,
other types of interactions are generated after the renormalization. Therefore we
cannot describe the change of the relative Boltzmann factors in the same space.
The flow from two lines go toward fixed points located away from them, depending
on the value of the given coupling K, that is the initial condition. One fixed point
at (us1,us2,uss) = (1,1,1) expresses the point corresponding to the paramagnetic
phase. Therefore the renormalization flow is absorbed into this point, given the
high-temperature initial condition as in Fig. 5.1. On the other hand, the corre-
sponding dual point moves toward another fixed point at (u3 1, us2, us3) = (0,0,0)
corresponds to the ferromagnetic phase as in Fig. 5.1.

From the observation of such behaviors of the renormalization flows related by
the duality, we recognize the existence of an unstable fixed point for the original and
the dual n-replicated +.J Ising model as in Fig. 5.2. We consider the trajectory of
the relative Boltzmann factors with the replica number n. For simplicity, we write
the representative point of the relative Boltzmann factor as (uq, us, - - - ,u,). The ini-
tial conditions, the original relative Boltzmann factors (uq, us, - - ,u,), are denoted
by the solid line in Fig. 5.2 and the corresponding the dual ones (uf,uj,- -, u})
are expressed by the dashed line on the same space as in Fig. 5.2. We consider the
projections on the two-dimensional plane (u;, uy) for the relative Boltzmann factors
as in Fig. 5.2, for convenience. The renormalized system also has a representative
point in the same space as in Fig. 5.2, because of the specialty on the hierarchical
lattice. We express such a development of relative Boltzmann factors at each renor-
malization step on the n-dimensional hyperspace as (ug’"), ug"), e ,u,({")), where the
superscript means the number of renormalization steps. Therefore we can depict
the renormalization flow following the arrows emanating from p. and d. to C, p
and d; to P, and p; and dj, to F. Here F is the fixed point corresponding to the low-
temperature limit, and P expresses the fixed point of the high-temperature limit.
The renormalization flow from the multicritical point p, reaches the unstable fixed
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Figure 5.2: A schematic picture to consider the renormalization flow and the duality for
the replicated £.J Ising model.

point C, (u§°°’,u§°°’, e ,u%oo)). On the other hand, there is the point d, related
with p. by the duality. We expect that the renormalization flow from this dual
point d. also reaches the same unstable fixed point C because p. and d,. represent
the same multicritical point. Considering the above property of the renormalization
flow as well as the duality, we find that the duality relates two trajectories of the
renormalization flow from p. and from d., tracing the renormalization flows at each
renormalization. In other words, after a sufficient number of renormalization steps,
the thin curve representing the original system and the dashed curve for the dual
system both approach the common renormalized system depicted as the bold line
in Fig. 5.2, which goes through the fixed point C. We estimate the initial condition
aiming at this unstable fixed point to determine the location of the multicritical
point for the replicated +.J Ising model and we show the obtained results for several
self-dual hierarchical lattices with the replica number 3 as well as 4 in Table 5.1.

Similarly to the results for the quenched limit n — 0 obtained in the previous
chapter, the multicritical point does not precisely but closely located at the con-
jectured point by Eq. (4.2) for the replica number 3 and beyond as in Table 5.1.
Therefore the conjecture (4.2) is not always satisfied for arbitrary replica numbers
on the hierarchical lattices. This is considered to be one of the reasons why the
multicritical point for the £.J Ising model is slightly away from the conjecture as
found in the previous chapter.
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n Pc Prumerical Pc — Pnumerical
n—0 0.889972 0.8915(6) —0.0015(6)

1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769563  0.768851 0.000713

4 0.757348  0.755451 0.001897
n— 0 0.889972 0.8903(2) —0.0003(2)

1 0.821797 0.821797 0

2 0.788675  0.788675 0

3 0.769563  0.769022 0.000542

4 0.757348  0.755942 0.001406
n—0 0.889972 0.8892(6)  0.0007(6)

1 0.821797 0.821797 0

2 0.788675  0.788675 0

3 0.769563  0.769649 —0.000086

4 0.757348  0.757763 —0.000415
n—0 0.889972 0.8805(6)  0.0004(6)

1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769563 0.7705020  —0.000939

4 0.757348 0.7601328  —0.002785
n—0 0.889972 0.8890(6)  0.0010(6)

1 0.821797 0.821797 0

2 0.788675  0.788675 0

3 0.769563  0.771376 —0.001813

4 0.757348  0.762313 —0.004965

Table 5.1: Differences between p. by the conjecture equation x¢(K, K) = z§(K, K), and
Pnumerical Py the exact renormalization analysis for the n-replicated £.J Ising model on
several self-dual hierarchical lattices. For n — 0, pnumerical denotes the results obtained in
Ref. [104] by Nobre’s technique [105], also shown for comparison.
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The way to improve the conjecture is inspired by this observation of the renor-
malization flow. Asseen in Fig. 5.1, the original and dual relative Boltzmann factors
give the initial conditions for the recursion relation of the renormalization flow. In
addition, a careful observation of the renormalization flow in Fig. 5.1 enables us
to recognize the fact that, after each step of renormalization, the renormalization
flow goes in some direction once (toward the unstable fixed point C as in Fig. 5.2),
and then is absorbed into the fixed point depending on the initial condition. In
other words, two points of the relative Boltzmann factors after the renormalization
approach the unstable fixed point closer than those before the renormalization. This
means we can improve the precision of the conjecture, if we assume the reason for
the failure of the precise prediction by the conjecture is mainly in the fact that
two lines expressing the relative Boltzmann factors do not always coincide for the
replicated spin systems. From this assumption, we suggest a way to improve the
conjecture to derive a more precise location of the multicritical point in the next
section.

5.2 Improvement by Renormalization

In the previous section, we observed the change of the relative Boltzmann factors
by the renormalization on the hierarchical lattices. Then we found the fact that
two points describing the original and dual relative Boltzmann factors near the
multicritical point approach each other after the renormalization as in Fig. 5.2.
The unstable fixed point of the renormalization is located between these points. If
two points of the relative Boltzmann factors coincide, we can predict the critical
point as the solution of Eq. (4.2) as the fixed point of the duality, similarly to
the non-random Ising model. We thus propose here an improved version of the
conjecture as follows,

2y 7K K) = 277N (K K), (5.4)
where 2" and 2" are the original and dual principal Boltzmann factors after r-
step renormalization, respectively. However the infinite-step renormalization is not
so easy to be evaluated.

If we recall that we could obtain the close point to the location of the multicritical
point on the hierarchical lattices even by the conventional version of the conjecture
(4.2), we assume that Eq. (4.2) is an approximation for the location of the mul-
ticritical point. We expect that the improved conjecture by the one-step (r = 1)
renormalization, which can be easily calculated analytically or numerically, becomes
a more precise approximation. The observation of the renormalization flow as in Fig.
(5.1) convinces us that the representative points of the relative Boltzmann factors
are closer to the unstable fixed point after the one-step renormalization. Therefore
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we consider the improved conjecture by the one-step renormalization below, and
show several results by this calculation.

5.3 Improvement for Replicated Systems

We numerically evaluate the suitable recursion relation for each self-dual hierarchical
lattice, similarly to Eq. (5.3). By equating the obtained principal Boltzmann factors
for the original and dual replicated £.J Ising models,

o (K, K) = 23V (K, K), (5.5)

we obtain the results shown as in Table 5.2. All results are in good agreement with
the numerical estimations as in Table 5.2. Comparison of Table 5.2 with Table
5.1 clearly indicates remarkable improvements. Therefore the improvement of the
conjecture is successful even by one step of the renormalization.

In the next section, we show the results by the improved conjecture for the
quenched random spin systems on the hierarchical lattices by the extrapolation to
the limit n — 0.

5.4 Improvement for Quenched Systems

In this section, we report the results by the improved conjecture in Eq. (5.5)
and evaluate its performance compared with the conventional conjecture for the
quenched systems (n — 0).

The conventional conjecture as in Eq. (4.2) yields an equation that the binary en-
tropy H (p) equals to 1/2 for self-dual hierarchical lattices as in Eq. (4.11). Similarly
to this relation, the improved conjecture gives an equation in terms that the entropy
given by the values of the renormalized couplings takes some value as described be-
low. After a one-step renormalization, we obtain again the replicated random-bond
Ising model on the hierarchical lattice with the renormalized couplings {Ki(jl)} and
their distribution function PM(K,;). The original and dual principal Boltzmann
factors for the replicated random-bond Ising model after one-step renormalization
are given as

V(K K) = / dK;; PO (K j)e e (5.6)

Y

7 (5.7)

V(K K) = / dKijP“)(Kij)(
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b pH

(D)

Pnumerical Pc~ — Pnumerical

0.821797
0.788675
0.769048
0.755986

0.821797 0
0.788675 0
0.768851 0.000197
0.755451 0.000535

0.821797
0.788675
0.769138
0.756250

0.821797 0
0.788675 0
0.769022 0.000116
0.755942 0.000308

0.821797
0.788675
0.769629
0.757619

0.821797 0
0.788675 0
0.769649 —0.000020
0.757763 —0.000144

0.821797
0.788675
0.769968
0.758461

0.821797 0
0.788675 0
0.770502 —0.000534
0.760133 —0.001672

0.821797
0.788675
0.769947
0.758300

W N R WD R WN R WN WD =3

0.821797 0
0.788675 0
0.771376 —0.001429
0.762313 —0.004013

Table 5.2: The results by the improved conjecture xgl)(K) = x’[;(l
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(D) (D)

De De Pnumerical Dc” — Pnumerical

0.889972 0.892025 0.8915(6) —0.0005(6)
0.889972 0.890340 0.8903(2) 0.0000(2)
0.889972 0.889204 0.8892(6) 0.0000(6)
0.889972 0.889522 0.8895(6) 0.0000(6)
0.889972 0.889095 0.8890(6) 0.0000(6)

T W NS

Table 5.3: The results for the quenched limit (n — 0) by the improved conjecture for the
self-dual hierarchical lattices.

where the distribution function is given by,

PY(K;;)

= / {H dKf?P(KS”)} 8(K; — K ({K)})).

unit

(5.8)

Here we use the couplings {KZ-(jl)} obtained by the calculation of the recursion such
Eq. (4.25). The product runs over the bonds on the unit cell of the hierarchical
lattice. The initial condition (K, K) is given by the point on the Nishimori line.
Using the principal Boltzmann factors defined in Eqgs. (5.6) and (5.7), we take the
leading term of the replica number n — 0 of the equation 2\ (K, K) = 2,V (K, K)
and obtain the improved conjecture for the quenched random spin system as

1
[ kPO ) o, {1+ ex (<2663} = 5. (59)

The left-hand side of this equation is written as H(")(p). Equation (5.9) gives the
results as the locations of the multicritical points for the self-dual hierarchical lat-
tices shown in Table 5.3. We also find that the improved conjecture gives results
depending on the feature of each hierarchical lattice because the prediction for the
self-dual hierarchical lattice is different from each other, which was not found in the
case by the conventional conjecture.

The improved conjecture also succeeds in leading to the relation between the
multicritical points on the mutually dual pairs. It is straightforward to apply the
improved conjecture to the mutually dual pairs, similarly to the case of the conven-
tional conjecture [100] as, by consideration of the product of two partition functions,

HY (po) + HO (my) = 1, (5.10)

where p, and p, denote the locations of the multicritical points on mutually dual
pairs. We estimate the values of the left-hand side of Eq. (5.10) for several pairs of
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Lattice Da Db value
1 0.9338(7) 0.8265(6) 1.002(7)
2 0.8149(6) 0.9487(7) 0.984(9)
3 0.7526(5) 0.9720(7) 0.993(9)
4 0.8712(6) 0.9079(6) 1.007(6)
5 0.8700(6) 0.9081(7) 1.011(6)
6 0.9337(7) 0.8266(6) 1.003(7)
7 0.9084(6) 0.8678(6) 0.996(6)
8 0.9065(6) 0.8686(6) 1.003(6)

Table 5.4: The results by the improved conjecture for the mutually dual pairs. We
estimate values of the left-hand side of Eq. (5.10) by the improved conjecture, shown on
the right-most column of this Table.

hierarchical lattices in Figs. 4.6 and 4.7. The obtained results are given in Table 5.4.
We use the values of the locations of the multicritical points obtained by Nobre’s
method, as in Table 4.2, to compare the performance of the improved conjecture
with that of the conventional conjecture in Eq. (4.27). We cannot find improvement
for all the cases, because we estimate the left-hand side of Eq. (5.10) by use of the
values for exact locations of two multicritical points given by stochastic approaches.
Equation (5.10) is not evaluated by a sufficient number of the renormalization steps,
but the first approximation for the multicritical point on the hierarchical lattice.
Therefore the improvement does not always work well. Nevertheless, especially for
the number 1 and 6 of the hierarchical lattices with the maximum differences 2% as
in Table 4.2, the improvement is greatly successful because both of the deviations
become less than 0.3% as in Table 5.4.

We can also see the performance of the improved conjecture from another point
of view, the phase boundary. We can predict the phase boundary by the improved
conjecture without the Nishimori-line condition K, = K, that is,

(K, K) = ;" (K,, K), (5.11)

The phase boundary is described for the +.J Ising model on the self-dual hierarchical
lattice with b = 3 scale length in Fig. 5.3. The critical point T, = 2.26919 for the
non-random Ising model is exactly reproduced by this equation. The slope from this
point is estimated as

1 dT
1dr = 3.30712. (5.12)
T. dp =T,

This value is closer to the numerical result 3.23(3) by Nobre [105] than the value
3.41421 by the conventional conjecture. Therefore we can consider that it is success-
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3.0

0.83 0.90 0.92 0.94 0.96 0.98 100

Figure 5.3: Conjectured phase diagram for the +.J Ising model on the self-dual hierarchical
lattice with the scale factor b = 3.The solid line describe the conjectured phase boundary
by the improved version and the dashed line expresses one by the conventional one. The
thin dashed line is the Nishimori line.

ful to derive a more consistent phase boundary with the one predicted by another
result. Nevertheless the conjectured phase boundary is inaccurate especially in the
low-temperature region under the Nishimori line. The phase boundary is expected
to be similar to one on the square lattice as in Fig. 1.6, or slightly reentrant toward
the ferromagnetic phase in the region under the Nishimori line [105]. We cannot
find the critical point py with a non-zero value in the ground state, for which the
existing results are listed in Table 1.2, by the improved conjecture as in Fig. 5.3.
Nobre numerically investigated the location of p, and estimated as p, = 0.8951(3)
[105]. Therefore we have to further develop a theory even for the low-temperature
region in the future but it should be emphasized that we have obtained an analytical
approach to derive an approximate but accurate location of the multicritical point,
the special critical point on the Nishimori line, and the slope of the critical points
of T,.. We have not seen a theory to derive the locations of the precise critical points
by such a simple equation as Eq. (5.11).

In the next chapter, we develop an improved version of the conjecture applicable
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to regular lattices such as square, triangular, hexagonal lattices.



Chapter 6

Improved Conjecture for Regular
Lattices

In this chapter we propose an improved version of the conjecture for the derivation
of more precise locations of the critical points on the regular lattices. In the previous
chapter, the structure of the hierarchical lattices enabled the renormalization group
analysis to give the exact calculation. On the other hand the renormalization group
analysis for the regular lattice is usually reduced to an approximate tool to derive
the location of the critical point, because many-body interactions appear after the
renormalization to prevent us from iterating the renormalization. If we attempt
to construct the recursion relation for the coupling constants, we introduce some
approximations such as the abandonment of such many-body interactions. The im-
proved conjecture for the hierarchical lattice has been successful within satisfactory
precision even by a one-step renormalization. Therefore we may not need to iterate
the renormalization, depending on desired precision. In addition, as seen in the
previous chapter, we sum over internal sites only in a unit cell of each hierarchical
lattice. This calculation gives an equivalent quantity to the partition function for a
small system, which consists of the product over the edge Boltzmann factors only
on the unit cell of the hierarchical lattice. Therefore we expect to be able to also
construct the improved conjecture for the regular lattice, if we consider the summa-
tion of the partition function on a limited range of the regular lattices. We regard
this quantity as the principal Boltzmann factor for the improved conjecture on the
regular lattices. The obtained results as will be seen below give an answer for the
location of the multicritical point for the 4+.J Ising model on the square lattice with
the precision to the fourth decimal point.

97
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6.1 Formalism

We first review the improved conjecture for the hierarchical lattice and consider
the application for the regular lattices. In the previous chapter, we found that the
conventional conjecture could not give the exact solution. We have proposed, for the
practical application, the improved conjecture by the one-step renormalization as an
approximation with higher precision than the conventional one. In this calculation,
we consider the summation over the internal sites on the unit cell of the hierarchical
lattices for parallel spins at both ends. This is the principal Boltzmann factor after
the renormalization. We can regard this renormalized principal Boltzmann factor
as the partition function defined on the unit cell of the hierarchical lattice under
the constraint that the spins at both ends are paralell. For example, we find this
replacement explicitly for the Ising model on the self-dual hierarchical lattice in Fig.
4.4, from Eq. (4.25), in

AeKD Z oK O (S1452+5152451+52) (6.1)
S1,52
____ unit

= Z(K) =) Je (6.2)
{Si} (i5)

where the overline means the summation over internal spins S; and S5 on the unit
cell of the hierarchical lattice in Fig. 4.4 with the edge spins up S; and S; = 1.
The product runs over the nearest neighboring pairs on the unit of the hierarchical
lattice.

Going back to our purpose, we attempt to construct the improved conjecture for
the random spin systems on the regular lattice. If we consider the development of the
conjecture in the same direction as the improvement on the hierarchical lattices, we
need the principal Boltzmann factor after the summation over internal sites included
in a limited range of the regular lattice. We call the limited range of the regular
lattice a small system in this thesis. When we take the summation over the internal
sites, we impose the fixed boundary condition on all the spins on the boundary of
the small system. We establish an improved version of the conjecture on the regular
lattice below, following the above consideration.

6.1.1 Square Lattice

The starting point of the establishment of the improved conjecture is the exact
duality relation for the n-replicated partition function. We first restrict ourselves to
the case for the random-bond Ising model on the square lattice as in Eq. (3.38) for
simplicity. It is straightforward to extend the following procedure to other random
spin systems and other lattices. As shown in Fig. 6.1, we consider to trace out a
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Figure 6.1: The example of the summation for the square lattice and the small system.
The top figures describe one of the types of the summation for the square lattice. The
bottom figures express the small system for the evaluation of the principal Boltzmann
factor.

part of the spins on the square lattice. Then the exact duality relation (3.38) is
reduced to

Z,(f)(x((f),xgs), .. ,x(S)) — Zg)(xg(s),x’{(s), . ,x*(S))_ (6.3)

n

Here Z,(ls) represents the reduced partition function by the summation of a part of
spins on the square lattice. The superscript s distinguishes the type of the ap-
proximations, which are different types of the summation as considered below. The
quantity :1:565) is the edge Boltzmann factor including many-body interactions gener-
ated after the summation. We take a small system of the square lattice as in Fig.
6.1 and define the principal Boltzmann factors after the summation to establish the
improved version of the conjecture, following the previously considered idea,

r n
part

o) = Z H eB7ij SiS; (6.4)
s v

_ part 1
.CL';(S) _ Z H ﬁ (eﬁJij + e*ﬁjij SZS]) , (65)
{si} (ig)
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where the overline means the summation over internal spins in the small system of
the square lattice as the filled circle in Fig. 6.1 with the other spins fixed in up di-
rections {S;} = 1. The word “part” represents that the product runs over the bonds
of the small system under consideration. These principal Boltzmann factors can be
regarded as partition functions after the configurational average and application of
the replica method defined on the small system under the fixed boundary condition
as shown in Fig. 6.1.

We then assume that a single equation gives the critical points for any number
of n, similarly to the conventional conjecture,

2l = 2. (6.6)

By the extrapolation of the quenched limit n — 0 of this equation, we obtain the
improved conjecture for the square lattice as follows,

log Z* (B, {J;;})],. — [log 2 (B, {Ji;})] . (6.7)

We need the configurational average for J;; of the logatihmic terms by two partition
functions Z®) and Z*(*) defined on the small system,

__ part

DA = YT (6.8)
{Si} (i)
OB, (7)) = ZH\f (77 + e TH55y). (6.9

{Si} (i5)

where the asterisk represents that the edge Boltzmann factor is given in a different
form obtained after the duality for the random-bond Ising model as shown above.
We can estimate the location of the multicritical point and other critical points by
the above relation (6.7) as detailed below. Similarly to the shown case on the square
lattice, we can derive the improved version of the triangular lattice.

6.1.2 Triangular Lattice

We use the replicated version of the duality relation for two partition functions
on the triangular lattice in Eq. (3.42) to establish the improved conjecture for the
triangular lattice. We restrict ourselves to the case for the random-bond Ising model
on the triangular lattice. We give several remarks on the face Boltzmann factor on
the triangular lattice. The original face Boltzmann factor has three edge Boltzmann
factors denoted as = defined on the bonds of the elementary triangle as in Eq. (3.39).
On the other hand, the dual face Boltzmann factor has three dual edge Boltzmann
factors * as in Eq. (3.41). In addition this face Boltzmann factor is defined on
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Figure 6.2: The example of the summation for the triangular lattice and the small system.

The top figures express one of the types of the summation for the triangular lattice. The
bottom figures express the small system for the evaluation of the principal Boltzmann
factor.

the bonds on the star shape as in Fig. 2.9. In the dual face Boltzmann factor, the
summation over the spin at the center of the star is included, which corresponds the
star-triangle transformation.

Similarly to the case of the square lattice, we consider the summation over a part
of the spins on the triangular lattice as in Fig. 6.2, and the exact duality relation
(3.42) for the triangular lattice is reduced to,

Z"([‘SI-){,n(AEJS)a Agﬂv e 7A(8)) = Z"E“sf){n(AS(S)a A){(S)a T vA*(S))v (610)

n

where Z%)m represents the reduced partition function by the summation over a part

of spins on the triangular lattice. The quantity A,(cs) is the face Boltzmann factor
after the summation. We define the principal Boltzmann factor after the summation
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over a part of the triangular lattices as,

- n

__ part
Ags) = Z H exp (8J1251S2 + 235253 + £J315351)
{S;} A av
(6.11)
[ - part
Ag(s) _ —ZN, Z Z H ﬂJlo + e*ﬁJmSlSO)
{Si} {So} A

n
x % (770 + e P05, 8)) % (ef7s0 + ef’J?»osSso)} ] ,(6.12)
where N§s) is equal to the number of the up-pointing triangles included in the small
system. The overline means the summation over internal spins included in the
small system of the triangular lattice as the filled circles in Fig. 6.2 with the other
spins (the white-colored sites) up {S;} = 1. The word “part” above the product
symbol represents over the up-pointing triangles in the small system as in Fig. 6.2.
The summation over S’ means the star-triangle transformation. We can establish
the improved conjecture for the trlangular lattme by an equation of these principal

Boltzmann factors after the summation A A ) and by the extrapolation to the
quenched limit of n — 0,
log 235 (8, {Js))| = |log 2848, {1,1)] _=o. (6.13)

Again we consider the configurational average for J;; of the logarithmic terms by

the partition functions Z; and Z:% defined on the small system of the triangular
lattice as,

__ part
Z&*s})a(ﬁa {7i;}) = Z H exp (8125152 + 235555 + 5J315351)J
'{Sl} A av
(6.14)
*(s) _ IN( I T 5110 BJ10
Zrg (B, J35}) = ZZH \/— +e 710G, 5)
| {Si} {So} A
% % (eﬁho + e BJ20 SQSO) % (eﬁJso + 6_5‘1305350)} .
(6.15)

Before detailed calculations for the determination of the locations of the critical
points, we consider the physical meaning of the improved conjecture from a different
point of view.
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6.2 Frustration Entropy and Multicritical Point

Here we consider the physical meaning of the improved conjecture, especially by
consideration of the case of the square lattice for simplicity. The second term Z(%)
on the left-hand side of Eq. (6.7) can be reduced to the entropy of distribution of
frustration under the Nishimori-line condition 3 = (3, for the small system under
the fixed boundary condition as in Fig. 6.1, because the second term Z® on the
left-hand side of Eq. (6.7) is the same as the free energy for the random-bond Ising
model defined on the small system as in Eq. (3.29). Therefore we can obtain another
expression of the second term Z(*) on the left-hand side of Eq. (6.7) as, for the case
of the +.J Ising model for instance, similarly to Eq. (3.30),

[log Z9(8,{J;;})]..
=—f [F(S)]

1
_ 5 2 29 (B, {Jig}) log Z0(8, {y})-
av 2N§S) (2 cosh 5pJ)Né) {g”:} ’ ] |

(6.16)

On the other hand, the first term Z*(*) on the left-hand side of Eq. (6.7), which is
generated from the dual principal Boltzmann factor after the summation, is not in
a gauge invariant form, because the gauge transformation defined as in Eqs. (3.12)
and (3.13) gives another expression of Z*(%),

part
x(s 1 OO _ OO
ZG( )(/B, {JZ]}) — Z H ﬁ (eﬁz]z] 10 + e 5Jz] i ]SZO-ZS]O-]) .
{si} (ig)
(6.17)

This is different from the case for the second term Z() on the left-hand side of Eq.
(6.7). The duality, however, transforms the first term Z*(*) on the left-hand side of
Eq. (6.7) into another partition function in the gauge invariant form. For instance,
in the case of the small system as in Fig. 6.3, the duality is the same as the simple
case as shown in Fig. 2.5. Therefore we can use the relation (2.29) as follows, by
setting ¢ = 2,

LN
Z0)[g*] = 2N =B 170y, (6.18)

where NS) is the number of bonds, and N is that of sites in the small system of
the original square lattice. We give a remark that we use here z* on the left-hand
side of this relation. The partition function expressed by Eq. (6.9) is defined on
the small lattice as in Fig. 6.3 and has the dual edge Boltzmann factor z*. We
apply the duality to this partition function. Therefore the partition function (6.9)
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Figure 6.3: The dual lattice for the small system in Fig. 6.1. The black colored sites are
free spins as the targets of the summation and the white ones are fixed in the up-pointing
directions.

is the start point of the duality and we set it on the left-hand side of Eq. (6.18).
The application of the duality for the small system as in Eq. (6.18) enables us to
explicitly write the resulting partition function Zp|x] in the following form, which
is gauge invariant,

_ part(D
ZUCRVIEESDY H e 555, (6.19)
{Si}  (i5)

where the ‘part(D)’ expresses the product over the bonds on the dual lattice for the
small system as in Fig. 6.3. This partition function is in a gauge invariant form and
the configurational-averaged quantity of its logarithm is the same as the free energy
of the random-bond Ising model defined on the dual lattice for the small lattice. We
use the relation (6.18) and rewrite the first term Z*(*) on the left-hand side of Eq.
(6.7) as

(s)
[log 29 (8, {J 1)), = [1o8 2 (8, 1J})| +(N§s>—NTB—1> log2. (6.20)

The first term on the right-hand side of this relation can be reduced to the entropy
of the distribution of frustration, because this is the free energy of the random-bond
Ising model defined on the dual lattice for the small system, as, similarly to Eq.
(3.30),

108 288, {11)]

1
=-8[F| =—=
D .. 2N£)>(

(6.21)
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Here N j(js ) expresses the number of sites of the dual lattice of the small system, which
is equal to that of the plaquettes of the original small system. In the case of the
small system of the square lattice as in Fig. 6.3, N® = 1, NS) =4, Nl()s) = 4. The
above considerations enable us to rewrite Eq. (6.7) as,

1
NG

N

S ]‘ S S
S (B,, ) — WS( (B, B) = (T —N® 4 1) log 2, (6.22)

where

OGs) = 3 25 B AJis)) o, 2806, 1))

(75;} (2cosh BpJ)NJ(E’S) (2 cosh BJ)NJ(BS)

S(S)(Bpaﬁ) _ Z Z(s)(ﬁpv{Jz’j}) log Z(s)(ﬁa{Jij}) . (6.24)

(s) (s)
(7} (2cosh B,.7)" (2 cosh B.J)"»

(6.23)

It is straightforward to obtain the same relation for the Gaussian Ising model by
use of the following quantities,

part(D)
A1 (J) 25 (o, {Ji 1) 1og Z5) (8, {Ji})
(i5)

SO, B) = /

(6.25)
S (o, ) = /ﬁdJij](Jij)Z(s)(JO,{Jij})logz(s)(ﬁa{z]ij}),
(ig)
(6.26)

where I(.J;;) is defined in Eq. (3.21).

If we set 3 = 3, for the +=J Ising model and 3 = J,, for the Gaussian Ising model,
we find that equation (6.22) states that the multicritical point is located where the
difference between two entropies of the distribution of frustration takes a special
value. Its physical meaning is not obvious yet. This problem should be considered
in the future.

If the improvement affects the predictions not only of the multicritical point but
also the critical points as shown in the case for the slope of the critical points in the
previous chapter, we can apply the improved conjecture to the random spin systems
without gauge symmetry. The absence of the Nishimori line on the phase diagram
does not permit us to rewrite Eq. (6.7) in term of the entropy of the distribution
of frustration as in Eq. (6.22). However the above discussions by the duality for
the small system are applicable to such random spin systems. We can thus give the
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critical points by the following equation for the random spin systems without the
Nishimori line,

3 (5]

N(S)

- [F“)]av) = (TB — N® + 1) log 2. (6.27)
av
Therefore our task to analytically derive the critical points in random spin systems
is to estimate the difference between the two free energies on the small system and
its dual one. It is straightforward to establish the expression as in Eqs. (6.22) and
(6.27) also for the case of the triangular lattice.

In the next section, we show the results for the precise locations of the multicrit-
ical points obtained by computing Eq. (6.7) for the square lattice and Eq. (6.13)
for the triangular lattice.

6.3 Derivations of Multicritical Points

We derive the location of the multicritical point by the improved conjecture for
the regular lattices. Setting 3, = 3, the Nishimori-line condition, for Eq. (6.7) or
equivalently (6.22), we can predict the location of the multicritical point for the
+.J Ising model as well as the Gaussian Ising model on the square lattice. If we
consider a larger range of the summation of spins, (i. e., the small system includes
more bonds and sites.) it is expected that the precision of the improved conjecture
becomes higher. One of the reasons is that the improved conjecture can include
more effects of spatially non-uniform interactions, which are essential features in
random spin systems. In other words, the conventional conjecture has been the
zeroth approximation without consideration of a form of the lattice and non-uniform
interactions in space. The improved conjecture is also an approximation but gives
more precise answers than the conventional conjecture, because it is formulated with
the consideration of an individual characteristic of the lattice similarly to the case
of the hierarchical lattices. We express the type of the approximations by the value
of s, which has represented the considered form of the small system. In this thesis,
we show the results of three types of approximations for the precise location of the
multicritical point on the square lattice by three different sizes of the small systems
as in Fig. 6.4 and two types of approximations on the triangular lattice especially
for the +.J Ising model as in Fig. 6.5.

6.3.1 First Approximation for the Square Lattice

We consider the first approximation for the location of the multicritical point on
the square lattice by the s = 1 small system as shown in Fig. 6.4. To identify
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So

Figure 6.4: Three patterns of the small systems for the improved conjecture on the square
lattice. The top figures express the small systems for the evaluations of Z() and Z*().
The bottom figures represent the dual lattices for the small systems, on which the partition
functions are denoted by Zp. The filled circles are the targets of the summation and white
ones are fixed in up directions {S;} = 1.

the multicritical point, we evaluate the quantities in Eq. (6.7). We calculate the
partition function on the s = 1 small system for the square lattice in Eq. (6.8) by
the summation over the single site at the center surrounded by four bonds with four
spins up, because of the fixed boundary condition. The result is given as

ZWB T, = Z oB(Jo1+Joa+Jo3+704)So
So==+1

= 2 COSh{ﬁ(J(n + J()Q + J03 + J04)} (628)
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g

Figure 6.5: Two patterns of the small systems for the improved conjecture on the trian-
gular lattice. The left-hand side for each type of the approximations is for the partition

()

function Z%){, and the right-hand side is for the dual partition function Z;R , for which

the star-triangle transformation is needed. We use the same symbols in Fig. 2.6.

Another partition function defined on the s = 1 small system in Eq. (6.9) is calcu-
lated as,

16D = (5 ) )3 H (¢ 1 Sy )

_ <%> {H(2cosh6,]0i)+H(28inhﬁJ0i)}. (6.29)

This quantity is also obtained from the evaluation of the partition function Zp
defined on the dual small system by use of the relation (6.18). Then we can explicitly
write down the improved conjecture for the location of the multicritical point for
the +J Ising model on the square lattice as, from Eq. (6.7),

Z 214 (1 + tanh* K, H TOZ> log (1 + tanh* K Hng>

Tij =1 =1
1 2cosh {K, ; 2cosh { K% 7
_Z Ky Eicomi} ), { Z“QT“} = 2log2, (6.30)
2COSth) (2 cosh K)

where we used the coupling constant K = 3.J and its sign 7;;. Setting K = K,

we solve this equation and obtain pgl) = 0.890725. This result is listed in Table 6.1
with other approximations for the location of the multicritical points on the square
lattice to see the performance of the improvement and to compare the improved
conjecture with the existing results.
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For the Gaussian Ising model, we have to evaluate the quadruple integration over
four bonds {.J;;} as,

4 4
/ HP Joi)dJo; log{H 2 cosh BJo;) +H(2 sinhﬁJOi)}
i=1 i=1

/ H P(Jyi)dJoi log {2 cosh{B(Jo1 + Joo + Joz + Jos)} = 2log?2,

(6.31)

where P(.J;;) is the distribution function defined in Eq. (3.5). The numerical manip-
ulation of this equation gives the location of the multicritical point for the Gaussian
Ising model on the square lattice as Jél) = 1.021564.

Other approximations for the square lattice by the small systems labeled by
s = 2 and 3 are straightforward to be evaluated. The numerical manipulation of
these approximations give the predictions of the location of the multicritical points
on the square lattice as pEZ) = 0.890824 and p?) = 0.890822 as listed in Table 6.1.

6.3.2 First Approximation for the Triangular Lattice

We show the calculation of the first approximation of the improved conjecture for
the location of the multicritical point of the £.J Ising model on the triangular lattice.
We consider the small system labeled by s = 1 with three up-pointing triangles as
in Fig. 6.5. In this case, it is convenient to define the following quantities,

Y(S,{JZ]}) — eﬁ(=’01+]025+]035) (632)
2
1
VS ) = 7 ) [T (€7 + e 7 (0 4 §'5e O
S'=411=1

2
1
= {H 2(:oshﬂJoZ B‘]"?’ +S’e_ﬁ‘]°3)
=1

2
+ [ (2sinh B.Jy;) (7702 — se—m)}, (6.33)
i=1

where the locations of the spins S’, S, and the sets of {.Jy;} are described in Fig.
6.6. The summation over S’ corresponds to the star-triangle transformation. We
calculate two partition functions for the small system of the triangular lattice as in



110 Improved Conjecture for Regular Lattices

Y (S, {Ji}) Y=(S,{Ji})

JOl JOQ JOl

Y Jo3

J03 S J02 IS
Y (S0, {J1.i5})  Y(So,{J2,;}) Y*(So0,{J1,i5})  Y*(So0,{J2,;})
S() SO
Y (So,{J3,i5}) Y*(So,{J3,})
1 *
Zq Zrs)

Figure 6.6: The relationships between Y and Z%){, and between Y* and Z:;%). The
spin S’ at the center of the star shape is of the summation for the star-triangle
transformation.

Fig. 6.5 as, by use of these quantities,

Z (B, {1} = Z HY So. {Jkii})

=+1k=1
= 2 eﬁzz:1 X COSh{ﬁZ(Jky(n —+ Jk,og)} (634)
k=1
7B} = Z HY (S0, {Jkis})
=+1k=1

3
= {H <H cosh BJg 0 + HsmhﬁJk 02)
k=1
3 /2
+ H <H cosh BJ g; sinh 5.Jy o3 + H sinh 3.Jj o; cosh 5Jk,03> } :
k=1 =1

(6.35)
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Substituting these quantities into Eq. (6.13), we can obtain the first approximation
of the improved conjecture for the location of the multicritical point of the +.J Ising
model on the triangular lattice. The result is given as pg) = 0.835957, which is
also listed in Table 6.1 with the one by another approximation by the numerical
manipulation of the s = 2 small system in Fig. 6.5.

6.3.3 First Approximation for the Potts Spin Glass

As another application of the improved conjecture, let us consider the Potts spin
glass defined in Eq. (4.13). We estimate the location of the multicritical point for
the Potts spin glass by the first approximation for the square lattice by use of the
s = 1 small lattice. The Potts spin glass has the edge Boltzmann factor as,

x(@]) _ 65J5(¢ij+lij), (6.36)
and the dual one,
* v 122055 ¢ij q
" (¢ij) = NG {e AR ;5(@3')} ; (6.37)

where v = e —1, ¢;; represents the difference between the nearest neighboring spins
between 0 and ¢ —1 and /;; is the random variable following the distribution function
(4.14). Therefore the partition functions as in Eq. (6.7) for the small system are
given as,

| 160 (i) .
_ part

Z*(l)(ﬁi {lij}) — Z H % {eiflijdh'j + %5(@])}1 ) (6.39)
(o) 6y VI J v

We can carry out the summation over ¢y at the center of the s = 1 small system as
in Fig. (6.4) as,
q—1
Z(l)(ﬁ {lzg}) — Z 65J{5(¢0+101)+5(¢0+l02)+5(¢0+103)+5(¢0+l04)}
$0=0
= q+4v+0° Z 8(loi log) + v° Z 6 (Lo Log, Tor) + v*6(lo1, Loz, los, loa),
i#j i#j#k
(6.40)
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where ¢ # j means the summation over different pairs among four bonds, and
t # j # k expresses the summation over all combinations of different three bonds
among four bonds.

70 = (L) ST+ o)

$0=0 i=1
4

= Z—j{(1+%>4—1+q5 <Zl0i>}- (6.41)
i=1

We rewrite Eq. (6.7) as follows, from these quantities,

(g4 0v)" — vt + qu'é (Z;l:l lo;)
q+4v +v? Z (Lo, loj) + v Z 8 (loi, loj, lok) + U45(101, Loz, los, los)
i#£] 1£j %k av
= 2logq, (6.42)

log

where the configurational average for the random variables {ly;} on the four bonds
follows the distribution function as in Eq. (4.14). We can estimate the location of the
multicritical g)oint for the Potts spin glass on the square lattice as pgl) = 0.0791462
for ¢ = 3, pgl = 0.0626157 for ¢ = 4, and pgl) = 0.0520578 for ¢ = 5. These results

are shown in Table 6.1 in comparison with those by the conventional conjecture.

6.4 Discussion

We discuss the performance of the improved conjecture and explain the features
found in Table 6.1 where all the obtained results by the improved conjecture in this
thesis are shown.

At first, we remark the predictions for the location of the multicritical point of
the +.J Ising model. All of the improved results for the +.J Ising model on the
square lattice indicate higher values about p. ~ 0.8908 than pgo) = 0.8900 by the
conventional conjecture. As the size of the small system increases, the prediction
of p. converges to some value about p. = 0.8908. If we compare the results by the
s = 2 and s = 3 small systems, the difference between two approximations is found
at the sixth decimal point. We desire the precision to the fourth digit in the fraction
to conclude the confliction between p. &~ 0.8900 and p. ~ 0.8908. For this purpose,
the improved conjecture gives a satisfactory answer that the multicritical point is
located at p. &~ 0.89082. Its validity is not proved. We therefore cannot completely
deny the possibility that the multicritical point locates at p. = 0.8900 as estimated
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Type Conjecture Numerical result
SQ +J P = 0.889972 [87, 88]  0.8905(5) [56]
M = 0.890725 0.8906(2) [57]
( ) = 0.890824 0.8907(2) [58]
( ) = 0.890822 0.8900(5) [59]
0.8894(9) [60]
0.89081(7) [62]
[

SQ Gaussian

TR £J

HEX +J

SQ Potts(q = 3)
SQ Potts(q = 4)

SQ Potts(q = 5)

J =1.021770 87, 88)
¢

J = 1.021564
(0’ = 0.835806 [101]
“) — 0.835956
(2’ = 0.835985
“” = 0.932704 [101]
“) = 0.932611
(2’ = 0.932593
“’) = 0.079731 [87, 88]
(” = 0.079146
“’) = 0.063097 [88]
(1’ = 0.062616
“’) = 0.052467 [38]
( ) = 0.052058

1.02098(4) [61]

0.8355(5) [59]

0.9325(5) [59]

0.079-0.080 [102]

Table 6.1: SQ denotes the square lattice, TR expresses the triangular lattice, and HEX

means the hexagonal lattice.
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Figure 6.7: Further approximations for estimations of slope of T,. The numbers of bonds
in each pattern are 24 (s =4), 36 (s =5), 40 (s = 6), 64 (s =7), and 60 (s = 8).

in other studies [59, 60]. However the following discussions support our conclusion
pe =~ 0.89082 from a different point of view.

The phase boundary can be predicted by the improved conjecture without the
restriction of the Nishimori-line condition, similarly to the conventional conjecture.
Unfortunately the improved conjecture fails again to derive a precise phase boundary
especially under the Nishimori line similarly to the case of the hierarchical lattice as
in Fig. 5.3. Nevertheless we find the improvement of estimations of the slope of the
critical point 7, of the non-random Ising model. We concentrate on the estimations
of the slope and show the results below by use of not only s =1, s =2, and s = 3
small systems but also various ones as in Fig. 6.7. The computing time of the order
~ O(2NJ(BS)) is needed in general for the calculation of the improved conjecture, in
particular for that of the configurational average on {J;;}, whose number is given as
N g). However, the configurational average becomes much simpler, when we consider
a calculation only around T, to estimate the slope of T, at which only a single bond
at most becomes the antiferromagnetic interaction. Therefore we can deal with
further approximations to estimate the value of the slope of T, by various small
lattices as in Fig. 6.7. The obtained values are listed in Table 6.2. We perform two
types of the approximations by the different forms of the small lattices with many
cross shapes and with many squares as in Fig. 6.7. Two types of the approximations
give different values but, in any cases, the increase of the size of the small system
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Number Value of slope  Number Value of slope

s=0 3.41421 s=0 3.41421
s=1 3.33658 s=2 3.30267
s=3 3.31272 s=4  3.28461
s=5  3.29352 s=6  3.27345
s=7 3.28161 s=8  3.26586

exact  3.20011 [106]  exact  3.20911 [106]

Table 6.2: The slope of the critical point of T, for the +.J Ising model on the square
lattice. We distinguish the approximations by the form of the small lattice as in Fig. 6.7.
The left-hand side table gives the results by the small systems with many cross shapes.
The right-hand side table shows the ones with many squares. For the comparison, we
write the result by the conventional conjecture denoted by s = 0.

shows the behavior of convergence to the exact solution 3.20911 of the slope of T,
by Domany [106]. Therefore it is considered that the improved conjecture gives a
systematic way to derive the precise locations of the critical points in random spin
systems. We need to consider the approximation by the use of the large size of
the small system, depending on the desirable precision. Going back to the location
of the multicritical point, we observe the difference between two approximations
by s = 2 and s = 3 and find conversion to the fifth digit. As a conclusion, the
improved conjecture is successful in giving the precise answer of the location of the
multicritical point with the precision to the fifth digit, p. &~ 0.89082.

The improved conjecture is applicable to the diluted Ising model by the evalua-
tion of Eq. (6.7) and use of the distribution function in Eq. (4.33). We investigate
the values of the slope of T, similarly to the case of the +.J Ising model, to evaluate
the performance of the improvement. We show the results for the slope of the crit-
ical points T, for the diluted Ising model in Table 6.3. These values also converge
to the exact solution 1.32926 [110], similarly to the case for the 4+.J Ising model.
From this point of view, the improved conjecture is a systematic approach to lead
to the precise locations of the critical points in random spin systems as well as such
a special point as the multicritical point.

The improved conjecture gives the predictions for the location of the multicritical
point of the +.J Ising model on the triangular lattice by consideration of two different
small lattices as in Fig. 6.5 as shown in Table 6.1. The results for the hexagonal
lattice are estimated by use of the relation (4.10) as listed in Table 6.1. From these
predictions, we conclude the location of the multicritical point, with the precision
to the fourth digit, for the triangular lattice as prr = 0.8360 and for the hexagonal
lattice as pyrx = 0.9326. A remarkable support for these results is also found in the
slope of T, for the triangular lattice. We estimate the values of the slope of T, for
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Number Value of slope  Number Value of slope

s=0 1.34254 s=0 1.34254
s=1 1.33780 s=2 1.33561
s=3 1.33626 s=4 1.33442
s=5 1.33500 s=6 133367
s=7 1.33420 s=8 1.33316

exact  1.32926 [110] exact  1.32926 [110]

Table 6.3: The slope of the critical point of T, for the diluted Ising model on the square
lattice. The left-hand side table gives the results by the small systems with many cross
shapes. The right-hand side table shows the ones with many squares. For the comparison,
we write the result by the conventional conjecture denoted by s = 0.

Number Value of slope  Number Value of slope

s=0 2.78984 s=0 1.19248
s=1 277566 s=1 1.19137
s=2 277146 s=2 1.19104
exact 2.73072 exact 1.18777

Table 6.4: The slope of the critical point of T, for the +.J Ising model on the triangular
lattice in the left-hand side and for the diluted Ising model on the triangular lattice in the
right-hand side. The results by the conventional conjecture are expressed by s = 0.

each small system. The exact value of the slope of 7. can be estimated as 2.73072
by the same calculation as the case of the square lattice [106]. The results are shown
in Table 6.4. These estimations also show that the improved conjecture can give
the precise locations of the critical points with the behavior of the convergence to
the exact solutions. We apply the improved conjecture to the diluted Ising model
on the triangular lattice and calculate the value of the slope of the critical points.
The results show again the similar behavior converging to the exact solution, which
is obtained by the same procedure as the case on the square lattice [110], as shown
in Table 6.4.

We also apply the improved conjecture to the Gaussian Ising model on the
soguare lattice only by the use of the s = 1 small system. The resulting value is
JOI) = 1.02156, which is slightly modified, about 0.2%, from the figure by the con-
ventional conjecture Jéo) = 1.021770. Therefore we need further approximations for
the determination of the location of the multicritical point for the Gaussian Ising
model with the precision to the fourth digit. If we compare the quantitative differ-
ence of improvement for the 4+.J Ising model with the one for the Gaussian Ising
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model, we find the improvement for the Gaussian model is a smaller change than
the one 0.8% for the +.J Ising model. This is why the distance between two points
of solutions by the conventional conjecture for the replicated system for the Gaus-
sian Ising model is closer than that for the £.J Ising model as in Figs. 4.2 and 4.3.
In other words, the conventional conjecture has been considered to give the close
location to the answer for the multicritical point of the Gaussian Ising model. If we
take account into this observation and the improved conjecture on the hierarchical
lattices, the duality can give the exact location of the critical point when two of
the original and dual relative Boltzmann factors coincide perfectly or have an inter-
section as the fixed point as found for the 2-replicated +.J Ising model as in Fig.
3.3. We can thus give a conclusion that the conventional conjecture cannot give an
exact solution, but is an approximation for the location of the critical points in ran-
dom spin systems. Its performance is considered to be determined by the deviation
between the two representative points of the original and dual relative Boltzmann
factors for the solution of the conventional conjecture.

The results are also given for the Potts spin glasses as in Table 6.1. These
show the deviations at the fourth digit from the predictions by the conventional
conjecture as found between pS’) = 0.079731 and pgl) = 0.079146 for ¢ = 3, between

¥ = 0.063097 and p" = 0.062616 for ¢ = 4, and between p* = 0.052467 and

pgl) = 0.052058 for ¢ = 5. If we give provisional conclusions for the locations of
the multicritical points for the Potts spin glasses on the square lattice, we remark
pe = 0.079 — 0.080 for ¢ = 3, p. = 0.062 — 0.063 for ¢ = 4, and p. = 0.052 for ¢ = 5.
Further approximations are needed for the decisive precision to the fourth decimal
point.

In addition, we remark that the improved conjecture works well for the diluted
Villain model as well as shown cases above [114].

If we need the precise location of the critical points in the random spin systems,
we consider the summation over spins in the small system taken from the considered
lattice, the improved conjecture. This may be a unique way to analytically derive
the location of the critical points in random spin systems with very high precision.
In addition, a possible way of the application of the improved conjecture as a nu-
merical implementation is considered. The algorithm is very simple. We estimate
the difference between the free energies with different edge Boltzmann factors as in
Eq. (6.7) or equivalently between the ones defined on two different lattices as in
Eq. (6.27). Moreover it is possible to directly analyze the verticality of the phase
boundary under the Nishimori line as in Fig. 1.6. Of course, in the low-temperature
region under the Nishimori line, the improved conjecture is still not a satisfactory
tool. If we consider a sufficiently large size of the small system, we may obtain the
critical point py in the ground state. As another direction, we use the properties on
the Nishimori line and consider the relationship between the improved conjecture
and its specialty. One of the relationships is found as the expression in terms of the
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entropy of the distribution of entropy. We should study this physical meaning in
the future.

In this thesis, we restrict ourselves to considering the random spin systems in
two-dimensional systems. However we can apply the duality to other dimensional
systems. For example, the duality can be transform the random-bond Ising model
on the three-dimensional cubic lattice into the random-plaquette gauge model on the
three-dimensional cubic lattice. The random-plaquette gauge model is an attractive
one in terms of the quantum toric code [73, 74]. An accuracy threshold to correct
error of the quantum toric code corresponds to the location of the multicritical
point on the random-plaquette gauge model with the random couplings following
+.J distribution function on the three-dimensional cubic lattice. The conventional
conjecture relates this threshold with the location of the multicritical point of the +.J
Ising model on the three-dimensional cubic lattice [115]. The improved conjecture
also cannot directly derive such an accuracy threshold, but can make more precise
relationship between the locations of the multicritical points on the random-bond
[sing model and the random-plaquette gauge model than the conventional conjecture
does. Similarly to the other spin-glass theory, the improved conjecture furthers the
information theory. This means a contribution to both of the classical and quantum
information theories.



Chapter 7

Summary

Since the pioneering result by the mean-field theory of the Sherrington and Kirk-
patrick model, we have been interested in the random spin systems and have ex-
pected the existence of the spin glass phase even for finite dimensional systems. For
finite-dimensional systems, it has been difficult to elucidate properties in the random
spin systems because very little systematic analytical work exists. We mainly rely
on the approximations, the phenomenological techniques and predominantly the nu-
merical simulations. In particular, a great number of numerical studies have been
successful in clarifying the critical phenomena at the critical points, estimating the
critical exponents, and categorizing the universality classes in random spin systems.
Unfortunately different results sometimes have been reported and their validity have
been discussed. To clarify the reliability of various numerical approaches, we have
to derive the exact or highly precise solutions.

In this thesis, we have shown an analytic study to systematically derive the
location of the critical points for finite-dimensional random spin systems. This
study is of practical importance to greatly facilitate the estimation of the critical
exponents and to give benchmarks for the reliability of the numerical approaches.
For these purposes, we considered the duality with the replica method in random
spin systems mainly through investigations of the +.J Ising model.

The duality has been a useful technique to establish the relationship between
two different models in non-random spin systems as in Chapter 2. Coincidence
of two lines expressing the representative points of the relative Boltzmann factor
related with each other by the duality permits us to derive the exact location of the
critical point. On the other hand, we cannot obtain such a satisfactory relationship
in random spin systems before and after the duality.

An argument using the gauge symmetry is a piece of the rigorous and exact
techniques. In the special subspace on the phase diagram, the Nishimori line, we
can calculate the exact value of the internal energy, evaluate the upper bound for
the specific heat and prove several correlation inequalities. Though the duality does

119



120 Summary

not always work well for the random spin systems, we assume that a single equation
gives the prediction of the critical point similarly to the non-random spin systems
as mentioned in Chapter 4, the conventional conjecture. This ansatz has given
some results in good agreement to the third digit with existing results by numerical
simulations and estimations. These successful predictions have been considered to
be justified by a special property on the Nishimori line, but several cases on the
hierarchical lattices show that the conjecture is not always valid.

We have then attempted, in Chapter 5, to construct the improved conjecture with
high precision beyond the conventional conjecture using the idea of the renormal-
ization group analysis, that is to sum over a part of degrees of freedom to elucidate
precisely properties near the critical point. This improved conjecture gives predic-
tions of the closer locations of the multicritical points to exact answers obtained by
the renormalization group analysis on the hierarchical lattices than the conventional
conjecture. The improved conjecture seems to be able to derive the critical points
in several regions, as well as the multicritical point on the Nishimori line, though we
unfortunately cannot obtain perfect answers for the locations of the critical points,
especially in the low-temperature region. However this study has given a basis for
the improvement of the conjecture on regular lattices.

The improved conjecture has been proposed for the regular lattices in Chapter
6. In this case, the renormalization group analysis does not work well because
many-body interactions are generated after the renormalization. Therefore we do
not iterate the renormalization but attempt to perform the summation over the
degrees of freedom in a limited range of the regular lattice under the consideration.
Instead of the iteration of the renormalization, we consider the summation over
the larger size of the small systems. In this formulation, the improved conjecture
has an appealing feature that the phase transition across the multicritical point
occurs when the entropy of the distribution of frustration takes a special value.
This physical meaning will become a significant problem on the phase transition
in the random spin systems. Though the improvement of the critical points in the
low-temperature region under the Nishimori line has been unsatisfactory, we have
obtained the location of the multicritical point for the +.J Ising model on the square,
the triangular, and the hexagonal lattices with the precision to the fourth digit. In
addition, the slopes of the critical points for several random-bond Ising models have
been estimated and have shown the behaviors converging to the exact solutions.
From these results, the improved conjecture is successful in deriving the precise
location of the critical points in several regions in random spin systems.

The improved conjecture is a meaningful step, since discovery of the Nishimori
line, to construct an analytic theory, which may be a unique way to lead us to ex-
act solutions in finite-dimensional random spin systems. It should be emphasized
that we have proposed a systematic approach to derive the location of the critical
points, because we can propose the suitable approximation by the analysis of the
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small lattice, and can give the answer with the desired precision. One of the pos-
sible applications of the improved conjecture is thus considered to be a numerical
implementation to estimate the precise location of the critical point. Then we will
obtain a sufficiently precise value to be regarded as the exact solution. It will be
the benchmark of the reliability of various numerical approaches before challenges
toward the unsolved problems related with the nature of the spin glasses.

In addition, the connection with the gauge invariance shows an appealing aspect
of the improved conjecture. The value of the entropy of the distribution of frustration
characterizes the phase transition on the Nishimori line. Therefore the improved
conjecture gives slight but another step to understand the deep meaning of the gauge
invariance in the spin glass. There is a further interesting problem that the phase
transition on the Nishimori line is related with problems on both of the classical and
quantum information processing. Analytic properties of the improved conjecture
will elucidate profound relationship among three different fields, the spin-glass, the
classical and the quantum information theories. Such hidden properties behind the
nature of the spin glass are possibly clarified only through the exact solutions and
analytic analyses. The line of our study is essential to truly understand the physics
on the spin glass and beyond.
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