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We investigate different ways of generating approximate solutions to the inverse prob-
lem of pairwise Markov random field (MRF) model selection. Motivated by traffic infer-
ence we design in parallel two concurrent models an Ising and a Gaussian model with the
constraint that they are suitable for “belief-propagation” (BP) based inference.

1 Problem statement

Once a joint probability measure is given, the belief propagation algorithm can be very
efficient for inferring hidden variables while observing the other variables, but in real
applications it is often the case that we have first to build the model. This is precisely
the case for the application that motivates this work. This deals with the reconstruction
and prediction of traffic congestion conditions, typically from sparse observations on the
secondary network where no fixed sensors are installed. Data are obtained from vehicles
embedded in the traffic, equipped with GPS and able to exchange data through cellular
phone connections for example, in the form of so-called Floating Car Data (FCD) by
sending their speed along with their position. The goal then is to be able to provide
at any time a travel time for each unobserved segment of the network and a short term
forecast for all segments.

Our approach to this objective is to build a MRF based on past observations. Each
variable representing a travel time is attached to a segment possibly at various discretized
time in the day. We assume that the collected data allows one for a statistical modelling of
each segment and a certain number of pairs of segments. The FCD sent by probe vehicles
concerning some area of interest are continuously collected over a reasonable period of
time (one year or so) such as to allow a finite fraction (a few percents) of road segments
to be covered in real time. Schematically the inference method works as follows:

e Historical FCD are used to compute empirical dependencies between contiguous
segments of the road network.

e These dependencies are encoded into a graphical model, which vertices are (seg-
ment,timestamps) pairs attached with a traffic index variable, like e.g. the binary
state CONGESTED /NOT-CONGESTED.

e Congestion probabilities of segments that are unvisited or sit in the short-term
future are computed with BP, conditionally to real-time data.

On the factor-graph, the information is propagated both temporally and spatially. In this
perspective, reconstruction and prediction are on the same footing, even though prediction
is expected to be less precise than reconstruction.
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MRF models

Since the distribution of travel time tt, for a given road segment ¢ is not given by a
simple parametric and identical model for all segments we do not consider the inference
problem in the space of travel time directly but consider instead various mapping x,(tt,)
attached to each segment which we call traffic indexes. This leads us to consider basically
2 different models:
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e A Gaussian MRF (GMRF): it is the most straightforward approach. First each

travel time tt, is mapped via its empirical cumulative distribution onto a normal-
ized Gaussian variable z, = N(0,1). The GMRF is then build based on a subset
of pairwise empirical covariance C’ov(a;g,xg/) computed in this space from the ob-
servations. In principle BP can be used in closed form in this case, the messages
exchanged between variables corresponding to the mean and the variance of these
variables.

Pros: this is well suited real variable inference for BP. If BP converges the marginal
are exact marginals of the GMRF model. The inverse mapping directly delivers
travel time predictions along with an estimation of the error.

Cons: there is a strong assumption that the data in the traffic index space have a
single mode, which is probably not true for traffic data, where we expect instead to
have different modes corresponding to different congestion patterns.

An Ising model for traffic: this approach is based on the intuition that a natural
binary latent state s, = £1 for NON-CONGESTED/CONGESTED is attached to each
segment. Then, instead of encoding the full dependency between different travel
times, we instead use this latent state as a proxy to encode dependencies between
segments. Based on the travel time cumulative distribution we propose different
ways of defining these latent state like: (i) a simple fixed threshold with s; =
2P(tty < tt;) — 1 where tt; is e.g. the median (ii) a random threshold allowing
one to map the belief b(s, = 1) directly to a travel time t¢t, through the inverse
cumulative distribution. The correlations between latent states variables needed to
feed the MRF model are obtained either by moment matching or via en expectation
maximization procedure.

Pros: natural and appealing binary description and a very light interaction model,
particularly well suited for BP when a multi-modal distribution is expected to be
associated to macrostate of congestion patterns.

Cons: variables to predict are real travel time and the mutual information between
two travel times is reduced to at most one single bit of mutual information, at least
when a fixed threshold (i) is used to define the latent state.

The Inverse Problem and a heuristic solution

In both cases we face a difficult inverse problem, where both the MRF’s graph structure
and parameters have to be found. In the Ising case these are the local fields and coupling
while in the Gaussian case this is the so called “precision matrix” i.e. the inverse covariance
matrix which has to be found. In the latter case, there are two issues which prevent the
direct use of the inverse covariance matrix: (i) the empirical covariance matrix may not



be necessarily full, in our context we expect many missing entries. (ii) the compatibility
with BP is not insured i.e. BP might not converge if the precision matrix is too dense.
Therefore in the Gaussian case we look for a good trade-off between likelihood and sparsity
of the model.

A statistical physics approach to the inverse Ising problem (IIP) is given by the linear
response theory combined with various hypothesis. If the coupling are assumed to be
small, the perturbation expansion can be used to deliver at lowest order the mean field
solution, the TAP solution at the next order ... A different type of mean-field approxima-
tion is the Bethe approximation which reduces to the TAP approximation at lowest order
and which consists in to assume that the graph is locally a tree. This leads to two, possi-
bly different mean-field solutions to the IIP: the direct one, by using the relation valid on
a tree between the joint probability and the single and pairwise marginal distributions;
the indirect one also called susceptibility propagation relying on the relation between the
inverse susceptibility matrix and the set of susceptibility coefficients attached to the links
of the tree.

These approach are mainly valid if we expect a high temperature model in its paramag-
netic phase. Instead our data displays low temperature behavior and cannot be considered
uni-modal. To get round this problem we have proposed first a simple heuristic deforma-
tion of the direct Bethe model with 2 parameters, K the mean connectivity of the graph
and « a global rescaling of the couplings. The graph is obtained by first determining a
maximum spanning tree with weights given by mutual information between variables and
completing up to the targeted mean connectivity by selecting links according to these
weights. The parameter o € [0, 1] allows one to interpolate between a model with inde-
pendent variables with single marginal matching the observation for a = 0, and the direct
Bethe solution for a« = 1. Upon joint calibrating of @ and K, the model is able to re-
cover well separated modes of a multimodal distribution. In that case, the model displays
many BP fixed points, in one to one correspondence with the hidden modes contained in
the observation data. We can interpret this heuristic solution through some asymptotic
mapping onto a Hopfield model.

4 Various Perturbations of the Bethe reference point

Minimal solution based on Maximum spanning tree with mutual information suggests it
is a good starting point from which we should perturb around the Bethe approximation to
find improved solutions compatible with BP. We have identified three different promising
and possibly complementary way of proceeding.

Line search along the natural gradient direction: a first direction is provided
by the observation that the natural gradient can be made explicit a the Bethe point.
It involves up to 4-points susceptibility coefficients which we can be actually computed
explicitly in term of the 2-points susceptibility coefficients at this reference point. Depend-
ing on the way the deformation of the model is then parametrized, tractable optimization
strategies using this natural gradient can be defined.

Iterative proportional scaling: A second direction that we have explored consists in
to proceed link-wise from this reference point. The link yielding the maximum gain in



likelihood is obtained by solving a simple variational problem which solution is referred to
as “iterative proportional scaling” (IPS) in the statistics literature, for solving maximum
likelihood estimation problem.

In the GMRF case we found that this can be implemented efficiently due to local
transformations of the precision matrix after adding one link. By comparison we im-
plemented methods based on sparse norm penalization (L or L;) and find out that it
is competitive with Ly based approach, with a O(N?3) complexity in the sparse regime.
Incidentally we also found that the L, based method is not working well for this problem.
An additional advantage of our IPS based solution is the possibility to combine it with
spectral constraints like walk-summability with BP or/and graph structure constrain to
enforce compatibility. For the same computational cost we can get a complete set of good
trade-off between likelihood and compatibility with BP.

Concerning the Ising model IPS is too computationally expensive, and even if we
separate the structure from the coupling selection, there is no satisfactory solution in the
low temperature regime. It can be used only for marginal modification of a Bethe model.

Low temperature expansion and loop corrections: For the Ising model a standard
way to deal with the high couplings at low temperature is provided by the low temperature
expansion, which in absence of local fields leads to a dual model of binary loop variables
with weak interactions. If local fields are non-zero, but a BP fixed point is given, a similar
generalized loop expansion w.r.t. to this reference point has been formulated (Chertkov,
Chernyak 2006). When looking at the explicit formula for the Bethe susceptibility we
can see that it potentially incorporates loop corrections which are wrong already at the
first loop contribution. This explains why susceptibility propagation is not working well
in this domain. Our proposal in this context to provide approximate solutions to the IIP
in a tractable way, is to use a minimal cluster expansion in the loop variables to exploit
the weak coupling hypothesis. In this way we obtain a self consistent system of equations
with a fixed point solution which can be found by iteration in some cases.

Acknowledgements: The work summarized here is done in collaboration with Jean-
Marc Lasgouttes, Yufei Han and Victorin Martin, in the context of the ANR SYSCOMM
Project TRAVESTI No 08-SYSC-017.

References

[1] http://travesti.gforge.inria.fr/

[2] C. Furtlehner, Yufei Han, J.-M. Lasgouttes, V. Martin. Pairwise MRF Calibration by
Perturbation of the Bethe Reference Point. INRIA RR-8059, 2012.

[3] C. Furtlehner, J.M. Lasgouttes, and A. Auger. Learning multiple belief propagation
fixed points for real time inference. Physica A: Statistical Mechanics and its Applica-
tions, 389(1):149-163, 2010.

[4] C. Furtlehner, J.-M. Lasgouttes, and A. de La Fortelle. A belief propagation approach
to traffic prediction using probe vehicles. In Proc. IEEFE 10th Int. Conf. Intel. Trans.
Sys., pages 1022-1027, 2007.



