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Connection between Free Energy and Belief Propagation on Random
Factor Graph Ensembles

Ryuhei Mori

In this research, we deal with probability distributions defined by random sparse factor
graphs. Free energy of random factor graph is informative in the context of low-density
parity-check (LDPC) codes and constraint satisfaction problems (CSPs) [1]. Let G denote
a factor graph consisting of N variable nodes and M factor nodes. Assume variable nodes
take a value on a finite set X . For each factor node a, there is a function fa(xxx) :X ra →R≥0
where ra denotes degree of a factor node a. A probability distribution on XN defined by a
factor graph G is

p(xxx | G) =
1

Z(G) ∏
a

fa(xxx∂a)

where xxx∂a denotes value of variable nodes connecting to a factor node a, and where

Z(G) := ∑
xxx∈XN

∏
a

fa(xxx∂a)

is a constant for normalization, called partition function. The purpose of this research is
derivation of E[logZ] by using the replica method where E[·] denotes the expectation with
respect to probability measure on a factor graph G.

In this abstract, the results for regular random factor graph ensemble are described.
The result can be easily generalized to irregular and Poisson factor graph ensembles [2].
Let l and r denotes degrees of variable and factor nodes. Connection of edges is chosen
uniformly from all (Nl)! connections. For simplicity, it is assumed that fa(xxx) does not
depend on a factor node a and denoted by f (xxx). The basic idea of the calculation is type
classification of xxx ∈ XN [3]. Let v denote the type of variable nodes i.e., the number of
variable nodes of value x∈X is v(x). Let u denote the type of factor nodes i.e., the number
of factor nodes connecting to r variable nodes of value xxx ∈ X r is u(xxx). Let N(v,u | G)
denote the number of assignments with type v and u on factor graph G. We can consider
the classification according to the type of xxx ∈ XN in the partition function, namely,

Z(G) = ∑
xxx∈XN

∏
a

f (xxx) = ∑
v,u

N(v,u | G) ∏
xxx∈X r

f (xxx)u(xxx).

The expected number of assignments with type v and u is

E[N(v,u | G)] =

(
N

{v(x)}x∈X

)( l
r N

{u(xxx)}xxx∈X r

)
∏x∈X (v(x)l)!

(Nl)!
.

Now, we consider the exponent of the contribution of types ν and µ where ν(x) := v(x)/N
and µ(x) := u(x)/((l/r)N), respectively. It holds

lim
N→∞

1
N

logE[Z(ν ,µ)] =
l
r
H(µ)− (l−1)H(ν)+ l

r ∑
xxx∈X r

µ(xxx) log f (xxx) =:−FBethe(ν ,µ).

Note that FBethe has the similar form of Bethe free energy. It holds

lim
N→∞

1
N

logE[Z(G)] = max
ν ,µ
{−FBethe(ν ,µ)}
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where, ν and µ have to satisfy the following conditions.

ν(x)≥ 0,∀x ∈ X , µ(xxx)≥ 0,∀xxx ∈ X r

∑
x∈X

ν(x) = 1, ∑
xxx∈X r

µ(xxx) = 1,

1
r

r

∑
i=1

∑
xxx\xi
xi=z

µ(xxx) = ν(z),∀z ∈ X .

The last condition is for the consistency between ν and µ . The above maximization prob-
lem is similar to the minimization problem of Bethe free energy in which the stationary
condition of Lagrangian is equivalent to the fixed point equation of belief propagation
(BP) [4]. In the same way, the exponent of the moment E[Z(G)n] can be calculated for
n ∈ N since Z(G)n can be regarded as partition function of factor graph on alphabet X n

and factor ∏
n
i=1 f (xxx(i)). Here, xxx(i) ∈ X r denotes vector (xxx(i)1 , . . . ,xxx(i)r ) where xxx j is j-th ele-

ments of xxx ∈ (X n)r and xxx(i)j denotes i-th element of xxx j ∈ X n.

THEOREM 1.

lim
N→∞

1
N

logE[Z(G)n] = max
(mv→ f (xxx),m f→v(xxx))∈S

{
l
r

logZ f + logZv− l logZ f v

}
.

where S denotes the set of saddle points of the function in max, and where

Zv := ∑
xxx∈X n

m f→v(xxx)l

Z f := ∑
xxx∈(X n)r

(
n

∏
i=1

f (xxx(i))

)
r

∏
i=1

mv→ f (xxxi)

Z f v := ∑
xxx∈X n

m f→v(xxx)mv→ f (xxx).

The conditions of saddle point are

mv→ f (xxx) ∝ m f→v(xxx)l−1

m f→v(xxx) ∝

r

∑
i=1

∑
xxx\xxxi
xxxi=xxx

f (xxx)
r

∏
j=1, j 6=i

mv→ f (xxx j).

From this derivation, we can easily understand why BP equation appears in the cal-
culation of exponent of moments since the problem is formulated as analogy to the mini-
mization of Bethe free energy.

Replica symmetric assumption says that solutions m f→v(x1, . . . ,xn) and mv→ f (x1, . . . ,xn)
of the maximization problem are invariant under permutations on x1 to xn. Furthermore,
the representations

mv→ f (xxx) =
∫ n

∏
i=1

Mv→ f (xi)dΦ(Mv→ f )

m f→v(xxx) =
∫ n

∏
i=1

M f→v(xi)dΦ̂(M f→v)

are assumed where Φ and Φ̂ denote probability measures on P(X ), i.e., Φ and Φ̂ are
elements of P(P(X )). Here, P(A) denotes the set of probability measures on a set A.

LEMMA 2.

−FRS = max
(Φ,Φ̂)∈S

{
l
r
〈logZ f 〉+ 〈logZv〉− l〈logZ f v〉

}
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where S denotes the set of saddle points of the function in max, where

Zv := ∑
x∈X

l

∏
i=1

M(i)
f→v(x)

Z f := ∑
xxx∈X r

f (xxx)
r

∏
i=1

M(i)
v→ f (xi)

Z f v := ∑
x∈X

Mv→ f (x)M f→v(x)

where {M(i)
v→ f }i=1,··· ,r and {M(i)

f→v}i=1,··· ,l are i.i.d. random measures obeying Φ and Φ̂,
respectively, and where 〈·〉 denotes the expectation with respect to the random measures.
The saddle point conditions are

∏
l−1
i=1 M(i)

f→v(x)

∑x∈X ∏
l−1
i=1 M(i)

f→v(x)
∼Φ

∑xxx∈X r ,xD=x f (xxx)∏
r
j=1, j 6=D M( j)

v→ f (x j)

∑xxx∈X r f (xxx)∏
r
j=1, j 6=D M( j)

v→ f (x j)
∼ Φ̂

where D denotes the uniform random variable on {1,2, . . . ,r} which is independent of any
random variable, and where M ∼Φ denotes that a random measure M has a law Φ.

This derivation of replica symmetric solution is simpler than previously known ones in
which complicated tools are used [5] e.g., integral expression of the delta function. Another
advantage of this research is that we can understand why the saddle point equation in the
replica symmetric solution is equal to the DE equation.

When f (xxx) is invariant under permutation on xxx, the fixed points for annealed free
energy in Theorem 1 for n = 1 are also fixed point for RS saddle point equation as delta
distribution. From the inclusion relation of domains of max in Theorem 1 and Lemma 2,
−FRS ≥ limN→∞ 1/N logE[Z]. On the other hand, from Jensen’s inequality, E[logZ] ≤
logE[Z]. We now obtain the following theorem.

THEOREM 3. Assume f (xxx) is invariant under permutation on xxx. If replica sym-
metric assumption is valid i.e., −FRS = limN→∞ 1/NE[logZ], then limN→∞ 1/NE[logZ] =
limN→∞ 1/N logE[Z].

This result is well known for regular LDPC codes [5].
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