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.
Toric code
..

......

Set a physical qubit on each edge of the square lattice on a torus.
The stabilizer operators are

Zp =
∏

(ij)∈∂p

σz
(ij) Xs =

∏
(ij)∈∂s

σx
(ij).

They are commutable and the stabilizer state satisfies

Zp|Ψ〉 = |Ψ〉 (∀p) Xs |Ψ〉 = |Ψ〉 (∀s)

Zp

XS |Φ> |Ψ>
The block denotes the physical qubit.
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.
Trivial cycle = Stabilizer operators
..

......

The stabilizer state can be characterized by a product of the operators

|Ψ(V ∗, V )〉 =
∏

p∈V ∗

Zp

∏
s∈V

Xs |Φ〉 (1)

We use the degeneracy as redundancy of the logical qubits.

|Ψ0〉 ∝
∑
V ∗,V

|Ψ(V ∗, V )〉

Zp Zp

Zp

Zp

Zp |Ψ>
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. . . . . .

.
Nontrivial cycle = Logical operators
..

......

Let us introduce the “logical” operators

Zh =
∏

(ij)∈Lh

σz
(ij) Xv =

∏
(ij)∈Lv

σx
(ij),

and Xh and Zv . (Zh and Xv , which commutes with each other, Zp and Xs)

XV

|Ψ >XV

Zh

|Ψ >Zh

.
Encode
..

......

We have four (22) different logical states.

|ΨZh
〉 ∝ Zh

∑
V ∗,V

|Ψ(V ∗, V )〉.

.
Computation
..

......

We can implement the Pauli operator
{Xh, Zv} = 0 on the toric code.

Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 4 / 15



. . . . . .

.
Nontrivial cycle = Logical operators
..

......

Let us introduce the “logical” operators

Zh =
∏

(ij)∈Lh

σz
(ij) Xv =

∏
(ij)∈Lv

σx
(ij),

and Xh and Zv . (Zh and Xv , which commutes with each other, Zp and Xs)

XV

|Ψ >XV

Zh

|Ψ >Zh

.
Encode
..

......

We have four (22) different logical states.

|ΨZh
〉 ∝ Zh

∑
V ∗,V

|Ψ(V ∗, V )〉.

.
Computation
..

......

We can implement the Pauli operator
{Xh, Zv} = 0 on the toric code.

Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 4 / 15



. . . . . .

.
Nontrivial cycle = Logical operators
..

......

Let us introduce the “logical” operators

Zh =
∏

(ij)∈Lh

σz
(ij) Xv =

∏
(ij)∈Lv

σx
(ij),

and Xh and Zv . (Zh and Xv , which commutes with each other, Zp and Xs)

XV

|Ψ >XV

Zh

|Ψ >Zh

.
Encode
..

......

We have four (22) different logical states.

|ΨZh
〉 ∝ Zh

∑
V ∗,V

|Ψ(V ∗, V )〉.

.
Computation
..

......

We can implement the Pauli operator
{Xh, Zv} = 0 on the toric code.

Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 4 / 15



. . . . . .

.
Error model
..

......

The error chain (flip (σx
(ij)) and phase (σz

(ij)) errors) appears following

P(E ) = p|E |(1 − p)NB−|E | ∝
∏
ij

eKpτE
ij

(
e2Kp =

1 − p

p

)

where τE
ij = 1 for ij ∈ E and τE

ij = −1 for ij /∈ E

p

Error correction strategy
Connection between two ends of error chains
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. . . . . .

.
Optimal error correction
..

......

The posterior distribution of additional chains E ∗ conditioned on ∂E is

P(E ∗|∂E ) ∝
∏
ij

eKpτE∗
ij

where E ∗ + E + C = C ∗ and C ∗ is trivial cycle while C is nontrivial one.
The trivial cycle reads τE∗

ij τE
ij τC

ij = σiσj .

.
Mapping to Spin-glass theory
..

......

Summation over C ∗ yields probability of C conditioned on ∂E .

P(C |∂E ) =
∑

E∗+E+C=C∗

P(E ∗|∂E ) ∝
∑
{σi}

∏
ij

eKpτC
ij τE

ij σiσj = ZC (Kp)

where ZL(Kp) is the partition function of the Edwards-Anderson model.
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.
How to identify the error correctablity?
..

......

Compute the (finite but large-size) partition function with/without
nontrivial cycles (Dennis 2002)

P(C |∂E ) =
ZC (Kp)

Z (Kp)
=

{
1 (∃C ) correctable

1/4 uncorrectable
Z (Kp) =

∑
C

ZC (Kp)

C C 
Φ X Y XYΦ X Y XY

Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 7 / 15



. . . . . .

.
My hope
..
......Compute the precise error thresholds in analytical way!

T

p

Tc

(p  ,T )
N

p
0

N

Red: Nishimori line (1/T = Kp)

.
Possible analytical way?
..

......

Without disorder, the duality is available

Z (K ) = λNB Z (K ∗)

where exp(−2K ∗) = tanh K .
K = K ∗ leads to the critical point.
The duality is applicable if

Self dual (Ising, Potts models)

Transition occurs odd times.
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. . . . . .

.
Duality for spin glass: Nishimori and Nemoto (2002)
..

......

Duality transformation with replica method estimates the location of the
critical points from [λn] = 1 → [log λ] = 0, but it fails self-duality.

(1 − p) log
(
1 + e−2/T

)
+ p log

(
1 + e2/T

)
=

1

2
log 2.

which leads to pN = 0.1100... (cf. 0.10919(7) by MCMC).

T

p

Tc

p ?
0

(p  ,T )
N N

.
Renormalization (Ohzeki 2009)
..

......

On the renormalized system, the duality
analysis leads to more precise value by

[log λ
(s)
c ] = 0 as pN = 0.1092....
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.
Applications
..

......

Duality with real-space renormalization estimates error-thresholds for

Toric code on square, triangular and hexagonal lattices
[M. Ohzeki: Phys. Rev. EE 79, (2009) 021129]

Color codes on triangular and square-octagonal lattices
[M. Ohzeki: Phys. Rev. E 80 (2009) 011141]

Toric and color codes under depolarizing channel
[H. Bombin et al: Phys. Rev. X, 2 (2012) 021004]

(diffirent type of errors) Loss of qubits
[M. Ohzeki: Phys. Rev. A 85, (2012) 060301(R)]

However, spin glass loses self-duality
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Why can the duality leads to precise values?
Critical polynomial
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. . . . . .

.
Critical polynomial for q-state Potts model (a heuristic approach)
..

......

The critical points of the Potts model (generalization of the Ising model)
are given by the partition function on the smallest unit

Z
(L)
2D − qZ

(L)
0D = 0,

where

Z
(L)
2D : a cluster on the torus that spans both spatial directions

Z
(L)
1D : a cluster that spans only one, but not both, of the directions

Z
(L)
0D : there are no spanning clusters.

The collection leads to the partition function as Z (L) = Z
(L)
2D + Z

(L)
1D + Z

(L)
0D .

Z
(L)

Z
(L)

Z
(L)

Z
(L)

1D 0D2D
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.
Critical polynomial for Ising model: M.O. and J. L. Jacobsen (2015)
..

......

The critical polynomial can be reduced to

Z (L) − 2Z
(L)
++ = 0

Z (L) =
∑
τx ,τy

Z (L)
τx ,τz


This is also obtained by the duality with real-space renormalization

.
Critical polynomial in spin glasses
..

......

Application of the replica method yields[
log Z

(L)
++

]
−

[
log Z (L)

]
= − log 2.

and estimates pN = 0.10929(2) [Extrapolation] (cf. pN = 0.10919(7)).
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.
Interpretation in quantum error correction
..

......

Compute the partition function
Compute the posterior distribution

With different boundary conditions (τx , τy )
of different nontrivial cycles −τE

ij σiσj = −τE
ij σiσj for ij ∈ C ∗

log Z
(L)
C − log Z (L) =


0 (error correctable)

− log 2 (middle point)

−2 log 2 (error incorrectable)
.

Completely the same statements!

.
lack of exactness of critical polynomial
..

......

Since randomness is not periodic, there is no units.
Increase of the size of units leads to higher precision.
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. . . . . .

.
Summary
..

......

We establish the analytical way to estimate the precise error thresholds
from the critical polynomials.

The similar conclusion in the quantum error correction,

log Z
(L)
C − log Z (L) =

{
0 correctable

−2 log 2 uncorrectable

In our method, the critical point is determined by the middle point as

[log Z
(L)
C ] − [log Z (L)] = − log 2.

We hope a decoder of the toric code is proposed from inspiration of
our method.
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