High-precision threshold of the toric code from spin-glass theory and graph polynomials

Masayuki Ohzeki

Kyoto University

2015/07/01

This is in collaboration with Prof. Jesper L. Jacobsen (ENS). J. Phys. A: Math. Theor. 48 095001 (2015) [IOP select] Supported by the JSPS core-to-core program, and MEXT KAKENHI (No.15H03699)

Toric code

Set a physical qubit on each edge of the square lattice on a torus. The stabilizer operators are

$$Z_{p} = \prod_{(ij)\in\partial p} \sigma_{(ij)}^{z} \quad X_{s} = \prod_{(ij)\in\partial s} \sigma_{(ij)}^{x}.$$

They are commutable and the stabilizer state satisfies

$$Z_{
ho}|\Psi
angle=|\Psi
angle\,\,(orall
ho)$$
 $X_{s}|\Psi
angle=|\Psi
angle\,\,(orall s)$

The block denotes the physical qubit.

Trivial cycle = Stabilizer operators

The stabilizer state can be characterized by a product of the operators

$$|\Psi(V^*,V)\rangle = \prod_{p\in V^*} Z_p \prod_{s\in V} X_s |\Phi\rangle$$
 (1)

We use the degeneracy as redundancy of the logical qubits.

$$|\Psi_0
angle\propto\sum_{V^*,V}|\Psi(V^*,V)
angle$$

Nontrivial cycle = Logical operators

Let us introduce the "logical" operators

$$Z_h = \prod_{(ij)\in L_h} \sigma^z_{(ij)} \quad X_{\nu} = \prod_{(ij)\in L_{\nu}} \sigma^x_{(ij)},$$

and X_h and Z_v . (Z_h and X_v , which commutes with each other, Z_p and X_s)

Nontrivial cycle = Logical operators

Let us introduce the "logical" operators

$$Z_h = \prod_{(ij)\in L_h} \sigma^z_{(ij)} \quad X_{\nu} = \prod_{(ij)\in L_{\nu}} \sigma^x_{(ij)},$$

and X_h and Z_v . (Z_h and X_v , which commutes with each other, Z_p and X_s)

Nontrivial cycle = Logical operators

Let us introduce the "logical" operators

$$Z_h = \prod_{(ij)\in L_h} \sigma^z_{(ij)} \quad X_{\nu} = \prod_{(ij)\in L_{\nu}} \sigma^x_{(ij)},$$

and X_h and Z_v . (Z_h and X_v , which commutes with each other, Z_p and X_s)

The error chain (flip $(\sigma_{(ij)}^{x})$ and phase $(\sigma_{(ij)}^{z})$ errors) appears following

$$P(E) = p^{|E|} (1-p)^{N_B - |E|} \propto \prod_{ij} e^{K_p \tau_{ij}^E} \left(e^{2K_p} = \frac{1-p}{p} \right)$$

where $\tau_{ij}^{E} = 1$ for $ij \in E$ and $\tau_{ij}^{E} = -1$ for $ij \notin E$

- A B A A B A

The error chain (flip $(\sigma_{(ij)}^{x})$ and phase $(\sigma_{(ij)}^{z})$ errors) appears following

$$P(E) = p^{|E|} (1-p)^{N_B - |E|} \propto \prod_{ij} e^{K_p \tau_{ij}^E} \left(e^{2K_p} = \frac{1-p}{p} \right)$$

where $\tau_{ij}^{E} = 1$ for $ij \in E$ and $\tau_{ij}^{E} = -1$ for $ij \notin E$

- A B A A B A

The error chain (flip $(\sigma_{(ij)}^{\chi})$ and phase $(\sigma_{(ij)}^{z})$ errors) appears following

$$P(E) = p^{|E|} (1-p)^{N_B - |E|} \propto \prod_{ij} e^{K_p \tau_{ij}^E} \left(e^{2K_p} = \frac{1-p}{p} \right)$$

where $\tau_{ij}^{E} = 1$ for $ij \in E$ and $\tau_{ij}^{E} = -1$ for $ij \notin E$

Error correction strategy

Connection between two ends of error chains

The error chain (flip $(\sigma_{(ij)}^{\chi})$ and phase $(\sigma_{(ij)}^{z})$ errors) appears following

$$P(E) = p^{|E|} (1-p)^{N_B - |E|} \propto \prod_{ij} e^{K_p \tau_{ij}^E} \left(e^{2K_p} = \frac{1-p}{p} \right)$$

where $\tau_{ij}^{E} = 1$ for $ij \in E$ and $\tau_{ij}^{E} = -1$ for $ij \notin E$

Error correction strategy

Connection between two ends of error chains

Optimal error correction

The posterior distribution of additional chains E^* conditioned on ∂E is

$${\cal P}(E^*|\partial E) \propto \prod_{ij} {
m e}^{{\cal K}_p au_{ij}^{E^*}}$$

where $E^* + E + C = C^*$ and C^* is trivial cycle while C is nontrivial one. The trivial cycle reads $\tau_{ij}^{E^*} \tau_{ij}^E \tau_{ij}^C = \sigma_i \sigma_j$.

Mapping to Spin-glass theory

Summation over C^* yields probability of C conditioned on ∂E .

$$P(C|\partial E) = \sum_{E^* + E + C = C^*} P(E^*|\partial E) \propto \sum_{\{\sigma_i\}} \prod_{ij} e^{K_p \tau_{ij}^C \tau_{ij}^E \sigma_i \sigma_j} = Z_C(K_p)$$

where $Z_L(K_p)$ is the partition function of the Edwards-Anderson model.

Optimal error correction

The posterior distribution of additional chains E^* conditioned on ∂E is

$$P(E^*|\partial E) \propto \prod_{ij} \mathrm{e}^{\mathcal{K}_p au_{ij}^{E^*}}$$

where $E^* + E + C = C^*$ and C^* is trivial cycle while C is nontrivial one. The trivial cycle reads $\tau_{ij}^{E^*} \tau_{ij}^E \tau_{ij}^C = \sigma_i \sigma_j$.

Mapping to Spin-glass theory

Summation over C^* yields probability of C conditioned on ∂E .

$$P(C|\partial E) = \sum_{E^* + E + C = C^*} P(E^*|\partial E) \propto \sum_{\{\sigma_i\}} \prod_{ij} e^{K_p \tau_{ij}^C \tau_{ij}^E \sigma_i \sigma_j} = Z_C(K_p)$$

where $Z_L(K_p)$ is the partition function of the Edwards-Anderson model.

- 3 **-** - 3

Optimal error correction

The posterior distribution of additional chains E^* conditioned on ∂E is

$$P(E^*|\partial E) \propto \prod_{ij} \mathrm{e}^{\mathcal{K}_p au_{ij}^{E^*}}$$

where $E^* + E + C = C^*$ and C^* is trivial cycle while C is nontrivial one. The trivial cycle reads $\tau_{ij}^{E^*} \tau_{ij}^E \tau_{ij}^C = \sigma_i \sigma_j$.

Mapping to Spin-glass theory

Summation over C^* yields probability of C conditioned on ∂E .

$$P(C|\partial E) = \sum_{E^* + E + C = C^*} P(E^*|\partial E) \propto \sum_{\{\sigma_i\}} \prod_{ij} e^{K_p \tau_{ij}^C \tau_{ij}^E \sigma_i \sigma_j} = Z_C(K_p)$$

where $Z_L(K_p)$ is the partition function of the Edwards-Anderson model.

How to identify the error correctablity?

Compute the (finite but large-size) partition function with/without nontrivial cycles (Dennis 2002)

$$P(C|\partial E) = \frac{Z_C(K_p)}{Z(K_p)} = \begin{cases} 1 \ (\exists C) & \text{correctable} \\ 1/4 & \text{uncorrectable} \end{cases} Z(K_p) = \sum_C Z_C(K_p)$$

My hope

Compute the precise error thresholds in analytical way!

Red: Nishimori line $(1/T = K_p)$

Possible analytical way?

Without disorder, the duality is available

 $Z(K) = \lambda^{N_B} Z(K^*)$

where $\exp(-2K^*) = \tanh K$. $K = K^*$ leads to the critical point. The duality is applicable if

- Self dual (Ising, Potts models)
- Transition occurs odd times.

(3)

My hope

Compute the precise error thresholds in analytical way!

Red: Nishimori line $(1/T = K_p)$

Possible analytical way?

Without disorder, the duality is available

$$Z(K) = \lambda^{N_B} Z(K^*)$$

where $\exp(-2K^*) = \tanh K$. $K = K^*$ leads to the critical point. The duality is applicable if

- Self dual (Ising, Potts models)
- Transition occurs odd times.

< ∃ > <

Duality transformation with replica method estimates the location of the critical points from $[\lambda^n] = 1 \rightarrow [\log \lambda] = 0$, but it fails self-duality.

$$(1-p)\log(1+e^{-2/T})+p\log(1+e^{2/T})=\frac{1}{2}\log 2.$$

which leads to $p_N = 0.1100...$ (cf. 0.10919(7) by MCMC).

Duality transformation with replica method estimates the location of the critical points from $[\lambda^n] = 1 \rightarrow [\log \lambda] = 0$, but it fails self-duality.

$$(1-p)\log(1+e^{-2/T})+p\log(1+e^{2/T})=\frac{1}{2}\log 2.$$

which leads to $p_N = 0.1100...$ (cf. 0.10919(7) by MCMC).

Renormalization (Ohzeki 2009)

On the renormalized system, the duality analysis leads to more precise value by $[\log \lambda_c^{(s)}] = 0$ as $p_N = 0.1092....$

Duality transformation with replica method estimates the location of the critical points from $[\lambda^n] = 1 \rightarrow [\log \lambda] = 0$, but it fails self-duality.

$$(1-p)\log(1+e^{-2/T})+p\log(1+e^{2/T})=\frac{1}{2}\log 2.$$

which leads to $p_N = 0.1100...$ (cf. 0.10919(7) by MCMC).

Renormalization (Ohzeki 2009)

On the renormalized system, the duality analysis leads to more precise value by $[\log \lambda_c^{(s)}] = 0$ as $p_N = 0.1092....$

Duality transformation with replica method estimates the location of the critical points from $[\lambda^n] = 1 \rightarrow [\log \lambda] = 0$, but it fails self-duality.

$$(1-p)\log(1+e^{-2/T})+p\log(1+e^{2/T})=\frac{1}{2}\log 2$$

which leads to $p_N = 0.1100...$ (cf. 0.10919(7) by MCMC).

Renormalization (Ohzeki 2009)

On the renormalized system, the duality analysis leads to more precise value by $[\log \lambda_c^{(s)}] = 0$ as $p_N = 0.1092....$

Applications

Duality with real-space renormalization estimates error-thresholds for

- Toric code on square, triangular and hexagonal lattices [M. Ohzeki: Phys. Rev. EE 79, (2009) 021129]
- Color codes on triangular and square-octagonal lattices [M. Ohzeki: Phys. Rev. E 80 (2009) 011141]
- Toric and color codes under depolarizing channel [H. Bombin et al: Phys. Rev. X, 2 (2012) 021004]
- (diffirent type of errors) Loss of qubits
 [M. Ohzeki: Phys. Rev. A 85, (2012) 060301(R)]

However, spin glass loses self-duality

Applications

Duality with real-space renormalization estimates error-thresholds for

- Toric code on square, triangular and hexagonal lattices [M. Ohzeki: Phys. Rev. EE 79, (2009) 021129]
- Color codes on triangular and square-octagonal lattices [M. Ohzeki: Phys. Rev. E 80 (2009) 011141]
- Toric and color codes under depolarizing channel [H. Bombin et al: Phys. Rev. X, 2 (2012) 021004]
- (diffirent type of errors) Loss of qubits
 [M. Ohzeki: Phys. Rev. A 85, (2012) 060301(R)]

However, spin glass loses self-duality

Why can the duality leads to precise values? Critical polynomial

Why can the duality leads to precise values? Critical polynomial

Critical polynomial for *q*-state Potts model (a heuristic approach)

The critical points of the Potts model (generalization of the Ising model) are given by the partition function on the smallest unit

$$Z_{2\mathrm{D}}^{(L)} - q Z_{0\mathrm{D}}^{(L)} = 0,$$

where

- $Z_{2D}^{(L)}$: a cluster on the torus that spans both spatial directions
- $Z_{1D}^{(L)}$: a cluster that spans only one, but not both, of the directions
- $Z_{0D}^{(L)}$: there are no spanning clusters.

The collection leads to the partition function as $Z^{(L)} = Z_{2D}^{(L)} + Z_{1D}^{(L)} + Z_{0D}^{(L)}$.

Critical polynomial for Ising model: M.O. and J. L. Jacobsen (2015)

The critical polynomial can be reduced to

$$Z^{(L)} - 2Z^{(L)}_{++} = 0 \quad \left(Z^{(L)} = \sum_{ au_x, au_y} Z^{(L)}_{ au_x, au_y}
ight)$$

This is also obtained by the duality with real-space renormalization

Critical polynomial in spin glasses

Application of the replica method yields

$$\left[\log Z_{++}^{(L)}\right] - \left[\log Z^{(L)}\right] = -\log 2.$$

and estimates $p_N = 0.10929(2)$ [Extrapolation] (cf. $p_N = 0.10919(7)$).

- Compute the partition function Compute the posterior distribution
- With different boundary conditions (τ_x, τ_y) of different nontrivial cycles −τ^E_{ii}σ_iσ_j = −τ^E_{ii}σ_iσ_j for ij ∈ C*

$$\log Z_C^{(L)} - \log Z^{(L)} = \begin{cases} 0 & (\text{error correctable}) \\ -2\log 2 & (\text{error incorrectable}) \end{cases}$$

Completely the same statements!

lack of exactness of critical polynomial

- Compute the partition function Compute the posterior distribution
- With different boundary conditions (τ_x, τ_y) of different nontrivial cycles −τ^E_{ii}σ_iσ_j = −τ^E_{ii}σ_iσ_j for ij ∈ C*

$$\log Z_C^{(L)} - \log Z^{(L)} = \begin{cases} 0 & (\text{error correctable}) \\ -2\log 2 & (\text{error incorrectable}) \end{cases}$$

Completely the same statements!

lack of exactness of critical polynomial

- Compute the partition function Compute the posterior distribution
- With different boundary conditions (τ_x, τ_y) of different nontrivial cycles −τ^E_{ij}σ_iσ_j = −τ^E_{ij}σ_iσ_j for ij ∈ C*

$$\log Z_C^{(L)} - \log Z^{(L)} = \begin{cases} 0 & (\text{error correctable}) \\ -\log 2 & (\text{middle point}) \\ -2\log 2 & (\text{error incorrectable}) \end{cases}$$

Completely the same statements!

lack of exactness of critical polynomial

- Compute the partition function Compute the posterior distribution
- With different boundary conditions (τ_x, τ_y) of different nontrivial cycles −τ^E_{ij}σ_iσ_j = −τ^E_{ij}σ_iσ_j for ij ∈ C*

$$\log Z_C^{(L)} - \log Z^{(L)} = \begin{cases} 0 & (\text{error correctable}) \\ -\log 2 & (\text{middle point}) \\ -2\log 2 & (\text{error incorrectable}) \end{cases}$$

Completely the same statements!

lack of exactness of critical polynomial

- Compute the partition function Compute the posterior distribution
- With different boundary conditions (τ_x, τ_y) of different nontrivial cycles −τ^E_{ij}σ_iσ_j = −τ^E_{ij}σ_iσ_j for ij ∈ C*

$$\log Z_C^{(L)} - \log Z^{(L)} = \begin{cases} 0 & (\text{error correctable}) \\ -\log 2 & (\text{middle point}) \\ -2\log 2 & (\text{error incorrectable}) \end{cases}$$

Completely the same statements!

lack of exactness of critical polynomial

Summary

We establish the analytical way to estimate the precise error thresholds from the critical polynomials.

• The similar conclusion in the quantum error correction,

$$\log Z_C^{(L)} - \log Z^{(L)} = \begin{cases} 0 & \text{correctable} \\ -2\log 2 & \text{uncorrectable} \end{cases}$$

In our method, the critical point is determined by the middle point as

$$[\log Z_C^{(L)}] - [\log Z^{(L)}] = -\log 2.$$

 We hope a decoder of the toric code is proposed from inspiration of our method.