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History of quantum annealing
..

......

Simulated annealing
S. Kirkpatrick, et al, Science 220 (1983) 671.

Quantum annealing
T. Kadowaki and H. Nishimori, Phys. Rev. E 58 (1998) 5355.

Quantum adiabatic computation
E. Farhi et al, Science 292 (2001) 472.
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What is quantum power?
..

......

It is capable to efficiently solve the optimization problem.
The factorization problem (NP?) can be solved by quantum computer.
[Shor’s factorization problem 1994]

Architecture of quantum computer is proposed in two ways:

Quantum gate

Sequential application of unitary gates
Tricky algorithm depending on optimization problem

Quantum annealing

Just only cooling the system
A simple algorithm for any optimization problem
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Quantum annealing
..
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By solving Shrödingier eq. (direct manipulation in nature),

i~
∂

∂t
Ψ(t) = H(t)Ψ(t), (1)

where

H(t) =
t

T
H0 +

(
1 − t

T

)
H1. (2)

.
Basic formulation
..

......

Cost function of optimization problem = H0

Driver Hamiltonian = H1
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Adiabatic evolution
..
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Initial state is the ground state for H1.
Slow driving ensures that

Final state is the ground state for H0.

Instantaneous Hamiltonian is

H(t) =
t

T
H0 +

(
1 − t

T

)
H1. (3)

t

E
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Rough sketch: one spin in transverse field
..
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t

T
H0 +

(
1 − t

T

)
(−Γσx

1 ) =

 t
T H0(+) −Γ

(
1 − t

T

)
−Γ
(
1 − t

T

)
t
T H0(−)

 . (4)

The non-diagonal elements express the hopping between states.
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Adiabatic theorem
..
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Adiabatic theorem demands, for P(T ) = |Ψ(t)|2 ≈ 1 − ε,

Tan. ≈
1

ε mint ∆(t)2
(5)

Residual energy is estimated as Eres = 1/T 2 where T is a computation
time.
[S. Suzuki and M. Okada (2005)]
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Phase transition
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In infinite-size system, the phase transition takes place at a some point

Quantum time in QA
1st-order trans. ∆ ∼ α−N Tan. ∼ α2N

2nd-order trans. ∆ ∼ N−β Tan. ∼ N2β

Analysis done by diagonalization and Monte-Carlo simulation.

Roughly speaking, quantum annealing for optimization problems involves

P: second-order transition

NP: first-order transition

Quantum annealing has the same performance as the classical computer?
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Where is the boundary between Quantum and Classical?
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Quantum Classical mapping (Nishimori et. al. (2014)
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(imaginary) Quantum system can not always be mapped to classical
system

d

dt
Ψ(t) = H(t)Ψ(t) ↔?

dP(t)

dt
= W (t)P(t) (6)

(diagonal part) Remaining Prob. in SA = (-)cost func. in QA

(non-diagonal) hopping Prob. in SA = (-)driver Hamiltonian in QA

QA with (non-diag.) negative elements ⇒ SA
QA with (non-diag.) positive elements ⇒ No classical algorithm
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Future direction 1
Beyond classical computer!
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Positive non-diagonal elements
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......

Another driver Hamiltonian is used to induce the other type of quantum
fluctuation

H(t) = λ {sH0 + (1 − s)H1} + (1 − λ)H2 (7)

where

H2 = +Γ′

(∑
i

σx
i

)2

(8)

[Y. Seki and H. Nishimori (2012)]

Not authorized figures!
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Future direction 2
Why do you stand on the ground state?
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Non-adiabatic quantum annealing
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Starting from ensemble with excited states under thermal fluctuations.
Perform the relatively high-speed annealing.

Quantum Jarzynski annealing [M. Ohzeki, PRL (2010)]

Nonadiabatic quantum annealing [M. Ohzeki, et al. JPSJ (2011)]

Experimental study [N. G. Dickson et al. Nature comm. (2013)]

From top to bottom, the time for QA is shortened.

Not authorized figures!
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Non-adiabatic quantum annealing (Somma et al. (2012)
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The oracular problem.

Sub-exp order in classical computation.

An efficient method based on the quantum walk exists.

In QA, closure of the energy gap appears twice, and then the intermediate
state is an excited state but the final ground state is achievable.

Not authorized figures!

Is efficient quantum speedup based on the multiple transition?
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Quantum annealing from a point of view of computational cost

Negative non-diagonal elements: classically simulatable

Positive non-diagonal elements: not classically simulatable

Two future directions

QA with nontrivial driver Hamiltonian

Multiple transition between ground state and excited state
Do not stick to the ground state while QA!
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