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In neuroscience, it is a fundamental problem to understand how neural networks learn
to yield a high behavioral performance. Although a lot of experimental studies have
been conducted for this goal with discoveries of characteristic activity profiles of the brain
circuits, few single theoretical frameworks have succeeded in relating microscopic mecha-
nisms of learning, activity profiles of circuits and macroscopic performances of the whole
network altogether. In the present study, inspired by the fluctuation-dissipation relations
in statistical physics, we constructed a theoretical framework for learning of stationary
dynamics of neuronal networks, deriving a general form of biologically implementable
learning rule from an arbitrary objective function. In this framework, neuronal networks
compute gradients of an objective function through statistics of spike interactions in sta-
tionary dynamics. Furthermore, this spike interaction-based learning rule is similar to
spike timing-dependent plasticity (STDP), which is an experimentally measured update
rule of individual synaptic weights. So our theory suggests that STDP is machinery for
extracting information from fluctuation of the system, although it would be fair to note
that there was also a similar line of study in the fields of reinforcement learning [1].

In order to examine whether our theory works well and some properties of the brain
circuits can be actually explained within our framework, we conducted numerical sim-
ulations. As the first example, we adopted mutual information between states at two
successive time points as an objective function, and derived a biologically implementable
learning rule according to the above framework. Then we could reproduce several firing
profiles of the real brain circuits, that is, filter properties of visual neurons, repeated
precise firing sequences and self-organized criticality called ’neuronal avalanche’, as con-
sequences of the learning. In the second example, we succeeded in deriving an efficient
biological implementation of reinforcement learning. In this implementation, we simul-
taneously maximized two different objective functions on two systems and constructed
a hybrid learning rule called ’actor-critic algorithm’. Interestingly, there are experimen-
tal evidences of this implementation in the real brain circuits, that is, thus constructed
learning rule accounts for firing profiles of dopaminergic neurons and persistently firing
cortical neurons.

From the above observation, we believe that our framework provides a useful tool
for the unified understanding of different aspects of the brain circuits, and also a good
example of biological systems which actively utilize information contained in fluctuation
of their dynamics.
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